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A New Model for  Error  Clustering 
in Telephone Circuits 

Abstract: This paper proposes a new  mathematical model to describe  the distribution of the occurrence  of 

errors in data transmission  on  telephone  lines. We  suggest: a) that the statistics of telephone  errors can be 

described in terms of an error probability depending solely  on  the  time  elapsed  since  the  last  occurrence 

of an error; b) that the distribution of inter-error intervals can be well approximated by a law of  Pareto 

of exponent less than one; the relative number of errors  and  the  equivocation tend, therefore,  to  zero  a5 

the length of the message is increased. The validity of those  concepts is demonstrated with the aid of ex- 

perimental data obtained from the German  telephone  network.  Further consequences,  refinements, and 

uses of the  model are described in the  body of the  paper. 

1. Introduction: The competing  models 

The model that we shall propose for describing the occur- 
rence of errors is  best  described by contrasting it with  two 
earlier  alternatives. The first is the binary symmetric chan- 
nel without memory. In that case, the transmission of any 
given bit  is not influenced by the correctness of the trans- 
mission of earlier parts of the message. It follows that  the 
distribution of the inter-error interval  is  such that Pr(t) = 
(1 - p)p t-1, which  is the geometric distribution, the vari- 
ant of the exponential  law  relative to integer  variables; the 
number of errors in a sequence of N bits is a binomial 
random variable. The many  tests  performed in recent 
years  yielding error data  on actual channels,  however, 
have demonstrated the inadequacy of this model. The 
error data have  been  qualitatively  described as appearing 
to be comprised of bursts of errors or, in fact, bursts of 
bursts of errors in addition to single,  independent error 
events. 

A second type of  model explains this clustering of the 
errors by postulating that the channel  has  two or more 
states or levels  of error susceptibility,  with transition 
probabilities between these  states.  Within  each state the 
occurrence of errors is  described in terms  similar to the 
binary  symmetric  channel, and the probability of error 
is dependent upon the state. For example  (Ref. l), there 
will  be a good state with a zero  probability of an error 
occurring, a bad state with a large  probability of error, 
and transition probabilities  corresponding to the changes 

from  good to bad states and vice  versa. The bad state 
gives  rise to the cluster of errors, and the transition proba- 
bility  is  chosen to account for the occurrence of these 
clusters. This second  type of model  obviously  gives  rise 
to the qualitative features  ascribed to the data, but it 
has  been found that the simple  models do not give good 
detailed  agreement and recourse  has  been  made to more 
complicated  models  with  several  states. 

The model we propose  in the next  section  is  similarly 
motivated by the qualitative appearance of the data. It 
had  indeed  been  observed  (see Footnote 1 and Refs. 2 
to 11) that clustering of events as well as long  periods 
without the appearance of  events  were characteristic of 
certain processes  governed by distributions of the Pareto 
type. The simplicity of these distributions warranted  their 
investigation for this application. 

2. A new alternative model for telephonic 
transmission  circuits 

Statement  of the fundamental postulates 

Our  alternative  explanation of error bunching  incorpo- 
rates three distinct  postulates : 

(A) We shall  claim that, although the distance T,+l - t ,  
between  successive errors is  surely not ruled by a geo- 
metric distribution the random variable T,,, - I, is 
statistically independent of the numbers ti which  specify 
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the  positions of earlier errors (i < n). The reader will ob- 
serve that random  variables will  always  be  designated by 
capital letters, while their  possible  values are denoted by 
the corresponding  lower-case letters; however, compara- 
tively little harm will  be incurred in the present  case if the 
reader  disregards this distinction. 

(B)  We shall assume that the distribution F(t) = 
Pr(T,, - t,-l < t )  attributes to small values of t  a proba- 
bility very  much  superior to that corresponding to the 
geometric distribution. 

(C) We shall  also  assume that F(t) attributes to large 
values of t  a probability very  much  superior to  that cor- 
responding to the geometric distribution. As a result, 
medium-sized t will  have an unusually  small  probability. 

A simple way  of  satisfying (B) and (C) is to assume 
that F(t) is a Paretian random variable, which  means that 

(B') 1 - F(t) = t-"' for small r 

(C') 1 - F(t) = Pt-*" for large t (Footnote 2). 

In general, a' and a" could  be  two  different  positive  num- 
bers. Things  would, of course,  be  greatly  simplified if 

our model  does not depend  upon this equality. In fact, 
our different  assumptions  need not even be satisfied  with 
equal  degrees  of  precision. 

a' = a" (implying that P = l), but the general  idea of 

Motivation of the fundamental postulates by  the  random 
walk  process 
The intuitive  reason that suggested the postulates (A) and 
(C') is the striking  qualitative  resemblance which  seemed 
to us to exist  between the empirical  records of inter-error 
intervals and the sequences  of returns to the origin in the 
classical  game of tossing a fair coin.  Let  us restate the 
rules of that game. The two  celebrated  old men Peter and 
Paul began to play  (circa 1700 A.D.) with  infinite fortunes; 
whenever their coin  fell on "heads," Peter  paid a cent to 
Paul, and whenever it fell on "tails," it was Paul who  paid 
a cent to Peter. The behavior  of G(m), Peter's  gain  after 
m coin  tosses,  is  well  known to mathematicians and to 
some  professional  gamblers to be totally contrary to what 
is  sometimes  referred to as "intuition."  Examine  indeed our 
Fig. 1 (which is reproduced from Fig. 111. 5 of Ref. 13). 
By definition, the intervals between  successive roots of the 
equation G(m) = 0 are given  by independent  random 
variables; there is no question, however, that they appear 
to be  grouped in clusters and that there are violent fluctu- 
ations in the intervals between such roots (Footnote 3). 
This suggests that error clustering and the violent  fluctu- 
ations in the bit-error rate of telephone  lines need not be 
due to dependence  between the inter-error intervals; both 
perhaps  may  be  described by peculiarities of the distri- 
bution of independent successive inter-error intervals. 

Figure 1 Record of Paul's winnings in a coin-tossing game, played with a fair coin. Zero-crossings appear 
strongly clustered,  although the intervals between them are obviously statistically independent. In order to 
appreciate fully  this Figure, one  must note  that the unit o f   t h e  used on the second and third lines equals 
20 plays. Hence, the second and third lines lack detail and each of  the corresponding zero-crossings is ac- 
tually a cluster or a cluster of  clusters. For  example, the details of  the clusters around time 200 can be 
clearly read on line I ,  which uses a unit of time equal 2 .  The present graph is reproduced from Fig. 111.5, 
Ref.  13. 

100 200 300 400 500 
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Returning to the distance between  successive roots of 
G(m) = 0, it is  well known that its probability  is  nonzero 
only if m is  even and is then equal to 

which asymptotically  follows  Pareto's law  with a! = 1/2. 
We took this Paretian behavior  seriously, but not the pre- 
cise  value  of 1/2 for the exponent a, and we  were thus 
led to  our assumption (C'). As to assumption (B'), it was 
added  in order to account for the possibility that trans- 
mission errors be  even more  clustered than the roots of 
the function G(m) of coin  tossing. 

The novelty  of our suggestions is that they show  how 
to generate apparent patterns of "contagion" by the  choice 
of a process of independent events; i.e., they generate non- 
stationary sequences with the  help of stationary processes 
(for  many  similar  examples,  see  Refs. 2 to 11). 

Further illustration of the  clustering properties of Paretian 
distributions 

Our suggestion is further motivated by Fig. 2, fully ex- 
plained in Reference 3. Let  us  consider three successive 
errors and let us suppose that the positions t,-, and tn+l 
are known,  while T, is not; the distribution of the random 
T, will be  studied  under three basic  assumptions. 

When the inter-error distances are geometrically dis- 
tributed, the distribution of T, is uniformly distributed 
between t,-l and t ,+l, so that the actual instants ti are 
neither  uniform nor bunched. 

If the inter-error  intervals  followed a binomial law  (a 
situation not encountered in practice),  they  could  be 
approximated by a Gaussian, and T, would  also  be a 
Gaussian variable,  having (l /2)(tn-,  + t,+,) as its mean 
value. Errors would tend to be  almost  uniformly  dis- 
tributed. 

But let T,,, - T, be a Paretian variable. In  that case, 
the probability of a value t' of T' = T, - T,-l, given the 
value t of T = T' + T" = T,+l - T,,-,,  is  closely ap- 
proximated by 

In other words, the distribution of T, will  have two very 
sharp peaks, located at the instants of time t,-, + 1 and 
t,+, - 1, and having equal amplitudes  independent of t. 
As a result, the middle error will  "huddle"  with either of 
the end errors, thus creating a cluster of two. 

Similarly, in the case of a large  number N of errors, a 
sizeable portion of the total sample  length will  be found 
in a few  of the longest  error-intervals,  say  in L of them, 
thus creating a pattern in  which errors are mostly  grouped 
in L clusters. 

It will naturally  be  desirable to "explain" the preceding 
226 phenomena by reducing  them to seemingly more ele- 

Figure 2 Three  cases of the  distribution of the 
inter-error interval T' = T,, - T,,, when 
successive  intervals T,, - T,, and Tn+1 - 
T,, are statistically  independent, and when 
the value t of T = T,, - T,, is known. 
In each case, the horizontal  scale is that of 
f, the  vertical  scale is that of  the probability 
of  t'. (For the sake of legibility, this prob- 
ability  is  interpolated by continuous lines; 
the  reader should recall that the geometric 
distribution is nothing but  a  discrete form 
o f  the exponential.) 

mentary  physical  facts. We shall not attempt to do so in 
this paper and shall  only  check the model and develop its 
consequences.  Our approach is "phenomenological", in the 
sense  generally  used to describe  classical  thermodynamics.' 

3. First  experimental  verification of the new model 

Paretian doubly logarithmic plots 

The standard method of checking the law  of Pareto for 
T,+, - T, consists in plotting log Pr(T,+l - T, 2 t)  as 
a function of log t ,  for the available data, in order to 
determine how  well the resulting graph is approximated 
by a straight line. Unfortunately, this procedure has  been 
neglected  by statisticians, so that no small-sample tests 
are available and valid  conclusions can be  drawn  only in 
the case of very long samples. The corresponding  most 
natural test of the independence of T,,, - T, with  respect 
to the past will consist in plotting log Pr(T,,I - T, 2 r)  
for every  pattern of past errors. Unfortunately, again, the 
need for very large  samples  has  limited  us to the first- 
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order transitions and some of high  order.  Therefore,  in 
varying t’ from 1 to 100,000, we have  performed the 
following  tests. 

We studied the function 

log Pr(Tn+l - T,, 2 t” ,  if T,, - Tn-l = t ’ ) ,  

which depends  upon three successive errors. 
Then we studied the function 

log Pr(T,+l - T, 2 t“, in the following  cases: 

either T,, - Tn-l = t’ ,  Tn-l  - Tn-2 = 1 ,  

and T,-z - Tn--3 = 1, 

or T,, - Tn-l = t ’ ,  Tn-l - Tn-2 = 1, 

and Tn-2 - Tn-3 = 2, 

or T,, - Tn-l = t ’ ,  Tn-l - Tn-z = 2, 

and Tn-2 - Tn-3 = 1, 

which depends  upon jive successive errors. 
Finally, we studied the distribution of the sum of three 

successive inter-error  intervals, T,+l - Tn”2, in order to 
compare it with the distribution of the sum of three inde- 
pendent random variables  having the same distribution 
as T,,l - T,: It is known that the Pareto graph of the 
sum  of three independent  variables  is  deducible  from the 
graph of one by a vertical translation of log 3 of the 
portion of the curves  corresponding to high  values of the 
variable (see for example  Ref. 3). 

The  results of various  plots of these three functions are 
given  in  Figs. 3 through 6. While a more  refined study 
of the  model and the supporting empirical  evidence will 
be made in Section 5, it is appropriate to examine  here 
the more  general  conclusions that may  be  drawn from 
these  Figures. The data used for these  presentations are 
the part obtained from the tests  described in Appendix I 
that corresponded to the transmit level  of -22  dbm. The 
approximate over-all  sample size  is  indicated by reference 
to Table I of that Appendix which  describes  similar  tests. 
Thus,  approximately 8 X lo7 bits were transmitted at 
this level and our sample of error-bit events  is  of the order 
of lo4. Therefore, the sample size for the marginal distri- 
butions  shown in Figs. 3 and 4 is  of the order of lo4. 

These  plots of the marginal distribution Pr(T,+l - 
T, 2 t”) constitute the fist test  of the model. The fact 
that a straight line  with  slope of about 0.4 fits this curve 
very  well  over approximately  four  decades of inter-error 
intervals  is  considered to represent a definite  first-order 
verification of that portion of the model. The behavior 
in the last decade  is not considered too meaningful for 
reasons that will be  discussed  in  Section 4. 

The plots of the first of the functions  listed, Pr(T,+l - 
T,  2 t”, if T,  - T%-l = t’) are given in Figs. 3 through 6 
for various  values of t’. The sample  size  is a decreasing 
function of t’ and is of the order of 5000 events for t’ = 1, 
2000 for t’ = 2, 1000 for t’ = 3, 500 for t’ = 4, 500 for t’ 

between 10 and 20, 100 for t’ between 50 and 60, and 300 
for t’ between 100 and 200. If the inter-error intervals were 
independent, we would  expect to find the same distribu- 
tion for all  values t’. The shapes of the curves are indeed 
strikingly  similar and, perhaps apart from the case  of 
t‘ = 1 which  is  discussed further in Section 5, indicate at 
least a first-order  verification  of the hypothesis of inde- 
pendence. The ordering of the curves for t‘ = 2, 3,4 does 
not appear to us to be  significant at this time. 

The plots of the second  of the functions are similar to 
the first  except that they  single out some  specific  previous 
patterns which correspond to typical “bursts” of errors 
as discussed in the literature. These  plots given in Figs. 5 
and 6 are necessarily  based on small  sample sizes  of the 
order of a hundred events.  Since  they  exhibit the same 
characteristics as the other curves,  they further establish 
the hypothesis of independence and our thesis that clusters 
per se or “bursts” do not have a separate intrinsic  meaning 
and identity. 

The third function, Pr(T,+, - T, 2 t”), plotted in 
Fig. 3, is  based on a sample of several thousand events. It 
is  seen that, consistent  with the assumption of independ- 
ence, the vertical  displacement by log 3 yields good  agree- 
ment. 

These  results, in toto, appear to establish quite defi- 
nitely the main  features of the proposed  model. The geo- 
metric distribution, which  is plotted on Fig. 7 for several 
values of its parameter, is  certainly  inapplicable. 

Joint distribution of successive inter-error intervals 

Pareto’s  graphical  method  has been  criticized on various 
grounds.  Actually, if the alternative hypothesis  is the geo- 
metric distribution, and if alpha does not exceed  (say) the 
value 3, this procedure is  much  better than is  sometimes 
believed  (see  Fig. 7 and Ref. 6). It seems  useful,  however, 
to present another form of the evidence,  originating in 
Refs. 5 and 10. 

Let us  begin  by considering continuous variables, T’ 
and T“, such that Pr(T’ > t’) = t‘-a for t’ > 1 and 
Pr(T” > t”) = t‘”u for t” > 1. If they are independent, 
their joint probability  density will  be  given  by the product 
of the marginal  densities: 

a t ’ - ( a + l )  . a t ~ ~ - ( a + l )  = a2(trtrr)-(a+1). 

Hence, the lines of equal density will  be  given  by t’t” = 
constant: they are hyperbolas truncated to the region 
where both t’ and t” > 1. 

This  is to be contrasted with the two  usual  cases. When 
T‘ and T“ are both exponential, the lines  of equal proba- 
bility are straight and parallel to the line t‘ + t” = 0. 
When T‘ and T“ are Gaussian, the lines  of equal proba- 
bility are circles. The contrast between these three types 
of curvature is so sharp that  no elaborate “goodness of 
fit”  procedure  is  necessary to decide  which  of  them  gives 
a better  representation of the data relative to a very large 
sample. 

The cases  of  integer-valued  variables T‘ and T” are very 
similar but more  complicated to write  down  analytically. 227 
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Figure 3 Cumulated doubly logarithmic plots of 
empiriaal inter-error  distributions at the 
transmit level of -22 dbm. Bold  line: 
marginal (unconditioned)  frequencies Pr 
(T,,+l - T, 2 t"). Dashed line: marginal 
frequencies  Pr(T,, - T,, 2 t " ) .  Thin lines 
(looking from the top down): conditioned 
frequencies Pr(T,+l - T,, 2 t", when T,, - 
T,,, = t'), for the  following values: t' = I ,  
t' = 2,  t' = 3, 1' = 4. The peculiar  behavior 
for t' = I is discussed in the body of the 
paper. 

Figure 5 Cumulated  doubly  logarith'mic graphs of 
the following empirical inter-error  distri- 
butions: thin line: Pr(T,,+, - T,, 2 t", when 
T ,  - Tn-l = 3, irrespectively of  the posi- 
tions of still  earlier errors): dashed line: 
Pr(T,+, - T,  2 f ,  when T,, - Tn-l = 3 
and either of the following is true: Tn-l - 
Tn-2 = I and  T,,, - Tn-a = I ,  or Tn-, - 
T,-, = I and  T,,-2 - Tn-a = 2, or Tn-l - 
Tn-, = 2 and Tn-2 - T,-a = I ), Granted 
that the second curve is based upon a much 
smaller sample, the  difference is  negligible. 
Extremely similar  results  hold for T,, - T,, 
= 2 or 4. 

I 

It" 

Figure 4 Cumulated doubly logarithmic plots of 
empirical inter-error  distribution at the 
transmit level of -22 dbm. Bold line: 
same as in Fig. 3. Thin lines (looking from 
the  top  down, in the region of t" = 100): 
conditioned frequencies corresponding to the 
following ranges of values of  t' : t' between 
100 and 200, t' between 50 and 60, t' be- 
tween 10 and 20. 

Figure 6 Data similar to  those  of  Fig. 5, except 
that T,  - Tn-l = 1 throughout,  instead of 
3. The lower curve is  very  close to the three 
curves of Fig. 3 that correspond to t' = 2, 
3 or 4, and therefore to both curves of  Fig. 
5. This seems to mean that there is no need 
here for the second-order correction which 
is suggested  ,by the special  behavior of the 
line t' = I of Fig. 3. 
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Figure 7 Cumulated doubly logarithmic plots  of 
two geometric inter-error distributions, 
corresponding  respectively  to a high and 
low value for the probability p of the 
mutually independent errors. The dashed 
lines  give two Paretian  laws of  exponent, 
% and I ,  as  well  as  a  law that  becomes 
Paretian with  exponent 4 when t” exceeds 
IO. 

Figure 8 reproduces a three-dimensional model of the 
joint probability  distribution.  Although the details are 
difficult to perceive in the photograph, the display clearly 
favors the  Paretian hypothesis, as against the Gaussian 
and exponential alternatives. 

4. Some  consequences  of  the new model of 

In Section 5 ,  we shall see that higher-order complications 
must be introduced  in order  to account fully for  the  data. 
This will not change the general implications of the model, 
but will make  them somewhat less clear-cut. It is therefore 
proper to interrupt the examination of the empirical 
verification at this stage, in  order to draw some impli- 
cations in the clearest case. 

The number oj finite moments oj the inter-error interval 

The usual methods of statistics have been designed for 
the study of random variables possessing finite moments 
of all orders, or at least up  to order 2. However, Paretian 
variables with 0 < a! < 1 (such as those  encountered  in 
coin tossing) have no finite population moment of any 
order, since the kth moment is given  by a divergent sum of 
the  form 

transmission  errors 

m 2 t k - l - n .  

1 = 1  

If 1 < a < 2, the first moment is the only finite one. 
At the same time, when the sample length is fixed, the 

sample moments of all orders  are finite. The useful conse- 
quences of infinite population  moments are therefore 
those relative to  the variation of sample  moments with 
sample size (Appendix 11). For example, the theory pre- 
dicts that, in the case of Paretian random variables with 
0 < a < 1, the first sample  moment will vary quite errati- 
cally with sample size and will, on  the whole, tend to in- 
crease like the power (sample size)-1+1’.. 

Unfortunately,  this  phenomenon cannot be illustrated 
here with the help of our  error  data, which-as  we shall 
see-have been unintentionally censored of the stretches 
most important in our context:  those  containing very few 
errors. 

Despite  this circumstance, we see that  it is  very im- 
portant to determine the value of a. But we originally 

Figure 8 Photographic  reproduction of a three- 
dimensional model of the  joint probabil- 
ity distribution  of T” = T,,, - T,, and 
TI = T,, - Tn-l. Actually  this  model was 
based upon  incomplete  data,  in  which sev- 
eral transmit levels had been  mixed  together. 
However,  given  the lack of precision of this 
photograph,  there  was no need to make a 
new  model f o r  the level of -22 dbm. 

Note  concerning  the coordinate scales: we 
wanted to  fit the  entire display within rea- 
sonable limits,  while preserving the legibil- 
ity of  the  most  important  part,  that close to 
the origin. For  that,  we  have used variable co- 
ordinate scales, in  which successive units 
correspond to the  following intervals of t‘ 
and t”: units f rom I to 49,  tens  from 50 to 
99,  hundreds f rom 100 to  999,  etc. . . . To 
each of the changes of scale corresponds a 
kind of “spike,” which has no intrinsic 
meaning. 
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found that the data were disappointing from the viewpoint 
of the sign of a - 1. Indeed,  judging  from  error-intervals 
of up to 10,000, a was  markedly  small (1/3 to 1/2), and 
even tended to decrease  with l / t .  But the local  slope of 
the Pareto graph  suddenly  increases when t passes 10,000, 
and it may  even  exceed 1 when t equals 100,000. This fact 
did not, however, lead us to abandon outright the con- 
jecture that alpha is the same for all t and of the order 
of 0.4. We argued that  it is very  likely  indeed that, for 
some  connections at least, our new mechanism is com- 
bined  with  independent errors having a very  small proba- 
bility  of  occurrence. If so, the observed  curve should be 
expected to be  some  average  of a straight line and of the 
curve  corresponding to the geometric distribution as 
plotted on a doubly  logarithmic graph; this is indeed  how 
the empirical  curves  look. 

Recently, however, our lack of concern  with the final 
sections of our curves  has  been  sanctioned in a better way. 
We found indeed that all runs including fewer than 5 
errors were not represented on our tape, because  they 
had  been  felt to be  statistically  irrelevant.  This  means 
that the actual data have  more  “tails” than the curves 
which  we have  plotted. We  wish  even to conjecture that the 
correct  value of alpha corresponds to the linear extrapo- 
lation of the flattest part of our curves,  i.e., that  it is closer 
to 1/4. A larger alpha would then be  required to repre- 
sent short inter-error intervals. 

In any  event, we feel  confident that there is  sense in 
drawing the consequences  of the assumption that a! < 1. 

The number of errors per m  symbols, N,,, 
It has  long  been  known in coin-tossing (see Ref. 13, p. 83) 
that if a play is made of m tosses, the number of roots of 
G(m) = 0 is  given  by  one-half  of the Gaussian distribution : 

Pr(N,, < ~ r n ” ~ )  = (2/1~)l/’ s,’ exp (- &s2) ds. 

Roughly  speaking, this N ,  will therefore  increase as m112, 
even though the most probable single  value for N,,, always 
remains equal to 1. More generally, the following was 
proved in Ref. 14: Let the known quantity m be the sum 
of an unknown  number N ,  of identically distributed 
random variables all following a law  of Pareto with 
0 < a < 1. Then, for large m, N,,,m-= will tend towards 
a nondegenerate limit: That is, the mean of N ,  is  [sin (a~)]. 
(ar)-lrn-, the standard deviation of N,,, also  increases as 
ma, and the relative  number of errors N,/m will almost 
surely tend to zero  with l / m .  

Applying this result to the present  subject-matter, we 
see that the average number of digits in error should be 
expected to tend to  zero as the length m of the message in- 
creases to infinity. 

It follows that the equivocation of our channel is zero. 
Indeed, U,  and V,,, being an emitted and received sequence 
of m symbols, Shannon has defined the equivocation  per 
sequence as being equal to -log Pr(U, 1 VJ.  In general, 
the precise  definition of this conditional probability  raises 

230 difficulties  in the case of channels  with  infinite  memory. 
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In  the present  case,  however,  equivocation is  simpIy the 
nonaveraged information required to specify the positions 
of the digits in error, i.e., the distances between the begin- 
ning of the sequence and the first error and the distances 
between  succeeding errors. 

Writingp(t) = Pr (inter-error interval = t), we see that 
the specification  of an inter-error interval  requires on the 
average the information 

c P O )  log2 P(t> - log2 a 
ca 

t - 1  

- (a + 1) 2 t - ( - + l )  log, t ,  
t - 1  

which is a finite quantity Q. Moreover, the information 
required to specify the position of the first error is  surely 
contained between 1 and log,m.  Hence,  averaging the 
equivocation  with  respect to all possible  positions of the 
errors, we find it to be  in the interval 

( N ,  - 1)Q to ( N ,  - 1)Q + h 2 m .  

Finally,  averaging  with  respect to values of N,, we find 
for large m that  the averaged  equivocation  is of the form 
“constant-ma. Q.” The constant alone will  be  modified 
by the residual  dependence to be  examined  in  Section 5. 
Hence, the equivocation  per  symbol tends to zero  with 
l/m, and, despite the presence  of an unbounded  number 
of errors, the channel  which we have defined has a  capacity 
equal to one. 

The  limit theorems oj the theory of injormation are there- 
fore inapplicable to binary transmission over actual tele- 
phone channels. 

Generally  speaking, the mathematical  theory of coding, 
that is, the theory of information as understood in the 
strictest  sense,  consists in evaluating the various  “pre- 
correcting  codes”  suggested by inventors, and in compar- 
ing  them  with an ideal of performance  associated  with 
certain probability  limit  theorems. The theory of infor- 
mation was  divided  by Shannon into two parts, according 
to the absence or the presence  of  noise. 

Actually (Footnote 4), this division  is  somewhat of an 
oversimplification,  because the theory of  noiseless trans- 
mission  is not the limit of the theory of transmission  in 
the presence  of  vanishingly  small  noise. For example,  since 
the capacity of the circuit of Section 3 is equal to one, 
there seems to be no need for error correction of any  kind. 
But,  actually, as the word  length  increases, the limit of 
the best error-precorrecting code is not identical to the 
best  code  corresponding to the limit  capacity of one. This 
type of limit  behavior is frequently  observed in engineer- 
ing, and is  referred to as being a “singular perturbation”; 
its classical prototype arises in the comparison of non- 
viscous  fluids  with those of  very  small  viscosity. Note that 
the inefficiency  of error correction  has  already  been  pointed 
out in the literature (see  Refs. 18 and 19). 

9 On the practical  utility of the new model of errors 
It is a simple matter to program a computer to generate 



sequences of errors according to our first-approximation 
model or to our second approximation; their  immediate 
practical  consequence  is  therefore that it becomes a simple 
matter to Monte Carlo the comparison between  codes. 
Even this semiempirical  method  surely  compares  favorably 
with the completely  empirical approach based upon the 
observation of actual performance,  with the help of a 
single  long taped sequence  of errors, or with the help of 
a new  sequence  of errors for each  coding scheme. Our 
error model  may  also  be  used in analyzing  queues in a 
communication  link, in studying  networks of such data 
circuits, and in finding  optimum  block-length in error- 
detection and decision-feedback  systems. 

One  should not disregard,  however, the difficulty of 
estimating the parameters of our model, at least until 
statisticians  develop adequate small-sample  techniques. 

In addition, even though the present  model  provides no 
standards of optimal error precorrection, there is  good 
hope of solving the classical  probability  problems  re- 
quired to compare the performance of various  precor- 
rection schemes  when the noise  follows our model. 

5. Further experimental and theoretical 
considerations 

Other experiments and some amendments to our mode[ 

The initial model,  involving a single  parameter alpha, 
does not account for the detailed structure of our various 
Figures. Of course, we think that the model of Section 2 
is a workable  first  approximation. For example, the con- 
ditioned distributions of Figs. 4 and 5 differ from the 
marginal distribution by a factor of two at most-while 
the geometric distribution is off by a factor of over 1000. 
However, it would  be  good to account for those vari- 
ations and also to include in the model the fact that the 
density  of errors seems to increase as the level  of the 
signal  decreases. We suggest,  therefore, that  the data can 
be better  represented by either of the following  two- 
parameter  laws. 

The first  law  supposes that the inter-error distances is 
such that 

Pr(T,+l - T,, = 1) = 1 - p 

Pr(T,,+l - T, 2 t ,  knowing that t 2 2) = p ( $ t ) - = .  

Here the additional parameter  is the probability that the 
inter-error interval be equal to 1 , and it may  be made 
dependent upon past errors. 

The second  possibility  is to write 

This V was  extensively  used in the theory of  word  fre- 
quencies  (Ref. 20); it could  also be made  dependent  upon 
the positions of past errors. 

Indeed, tests similar to those of  Section 3 have  been 
performed in the case  of transmit levels  of -10 dbm, 
-16 dbm and -28 dbm  (see  Appendix  I).  Some  of the 

results are plotted on Figs. 9 through 12. The general 
appearance of these  graphs  is the same as for the trans- 
mit level  of -22 dbm, but Figs. 11 and 12 suggest that 
the parameters alpha and p or V must  be  made to depend 
upon the outside  conditions. We shall not study the de- 
pendence of T,,, - T, on transmit level any  further. 

We shall, however,  examine in greater detail the asser- 
tions concerning T,+l - T,, made  in  Section 3. For that, 
we shall begin  by plotting the variation of the function 

Pr(T,+l - T, = 1 when Tn - Tn-, = t'),  

when its  argument t' varies from 1 to 10,000. It is  clear  in 

Figure 9 Dafia similar to  those of Fig. 3, but  the 
transmit level was -28 dbm, and only 
three thin  lines are given: t' = I ,  t' = 2,  
and t' = 3.  

Figure 10 Same explanation as for Fig. 4, but the 
transmit level was -28 dbm. Looking 
from  the  top  down  (in  the region of t" = 
I O O ) ,  the  three thin  lines correspond to 
the following ranges: t' between IO00 and 
2000, t' in  the  region  between IO0 and 
200, t' in the rigion between 50 and 60. 
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Figure 11 Cumulated doubly logarithmic, plots of 
the  distribution Pr(T,+, - T,  2 t”, given 
that T,  - T,-l = I ) ,  for four transmit 
levels. Looking  from the top down  (in 
the  region  around t” = l oo ) ,  the four 
lines correspond to the  transmit  levels of 
-28 dbm, -22 dbm, -16 dbm,  and “ 1 0  
dbm. 

Figure 12 Data similar to  those  of Fig. 11, except 
that the four curves  correspond  to mar- 
ginal (unconditioned)  distributions  of 
Pr( T,,, - T,, 2 t”) . 

Fig. 13, based upon a  sample of several thousand events, 
that this  function is practically independent of t’, except 
for perhaps  for t’ = 2 but mostly except for t‘ = 1, where 
its value is much smaller than elsewhere. This means that 
sequences of three successive errors are actually  markedly 
less  frequent than predicted  by our $rst-approximation 
model. In other words, our model is too successful in pre- 
dicting the extent of clustering of errors even when  the 

nections and  the character of the transmission facilities 
(microwave or loaded cable) and because the test was a 
loop test, there is a high probability of clustered-error 
correlation  time equal to the  total  transit time around  the 
loop. Thus a  disturbance (e.g., dropout)  at  the trans- 
mitting  end is likely also to disturb  the currently received 
baud. This loop test  condition is atypical of normal trans- 
missions. It is the reverse of the  error  trend underlined at 
the preceding paragraph. 

In contrast, the curve for T,+l - T, = 2, shown  also 
in Fig. 13, and based on a smaller sample, indicates no 
systematic deviation from independence of t‘. 

In  the same vein, it is illuminating to consider the con- 
ditional  distributions of T,+l - T,, given the value of 
t’ = T, - T,-,, and given that T,+l - T, is not equal 
to 1. For  that, it is sufficient to move  all the conditional 
distributions up, until  they go through  the  point of abscissa 
2 and  ordinate 1.  All the various curves become practically 
superposable, winding around each other without clear 
pattern. 

In other words, our earlier model may be  amended, 
preserving an  alpha independent of T, - T,-l = t’, while 
the  quantity p or V introduced at  the beginning of this 
section takes different values for t‘ = 1 and  for t‘ > 1. 

Our first-order model may alternatively be improved  in 
another way, if one considers “loose clusters” for which 
T,L - T,-l is between 3 and 10. We see in  the various 
Figures that, after  such  a  cluster, and  for t” ranging 
from 50 to 10,000, Pr(T,,+l - T,  2 t”) is smaller than if 
T, - T,-l equals 1 or 100. Hence, the observation of a 
“loose cluster” seems to decrease the probability that  the 
ensuing  error-interval  be very long, even though it has 
very little effect for T,,, - T,  around 10. 

a Generation oj pathological distribution by mixture of non- 
pathological random variables 

The pathological behaviors sketched in  this  paper also 
occur in various  forms and with various intensities in 
the  other subject matters  treated  in our References 2 to 11. 
They  have repeatedly offered the suggestion that all 
difficulties could  perhaps  be attributed to the mixing of 
data of various origins or characters. The argument 
proceeds by suggesting that nonmixed data may be  non- 
pathological. Actually, even if theoretically correct,  this 
suggestion would not have been very useful, because it 
would introduce so many parameters, that reliable esti- 
mation and prediction would be impossible anyway. More- 
over, the law of Pareto has  some very special properties 
relative to mixture, as seen in Reference 6. Finally, by 
looking at small subsamples of our  data, we have found 
(see Fig. 14), that differences between them are slight if 
the subsamples are already long, and surely nonsignificant 
for the small subsamples. 

inter-error intervals are statistically independent. The num- 
ber of “clusters” of the  form error-correct-error-error is 
also somewhat overestimated. 

a On a  possible role of the model of “quality states” on a 
more macroscopic level 
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There is one disturbing implication in the test con- By comparing successive very long  stretches of data con- 

ditions. Depending on  the length of the dialed-up con- cerning errors  (that is, stretches of several hours’ dura- 

J. M. BERGER AND  B.  MANDELBROT 



tion), we found  further effects that our model seems unable 
to explain. Therefore, even if our model represents fully 
the data  on shorter sequences of errors,  it may turn  out 
to be  necessary after  all to assume that the  fundamental 
parameters vary in time. 
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Appendix 1 Error rates in  phase  modulation tests 

The  data  that have been  used in testing the proposed model 
were communicated to  the  authors by W. Hoffman of the 
IBM  Germany  Laboratories. They were obtained  from 
tests on  the  German public network performed jointly by 
IBM  Germany and  the  German Postal Administration. 
These tests were performed on  both rented and dialed-up 
connections using both phase and frequency modulation 
subsets operating at 1200 bauds. Only the  data obtained 
from  the frequency modulation subset tests on the dialed- 
up connections have been available for  our analysis. A 
complete description of the  nature of these tests is avail- 
able  in Annex 12 of "Study Group Special A-Contri- 
bution No. 15" to the International Telephone and Tele- 
graph Consultative Committee (CCIlT) by the Federal 
Republic of Germany  dated September 25,  1961. That 
report describes the phase modulation  tests; however, 

Figure 13 Variation of Pr(T,+, - T,, = I when T ,  
- Tn-I = f ) ,  upper curve, and of Pr(T,+, 
- T, = 2 when T ,  - T,, = f ) ,  lower 
curve, for a range of  values of t'. 
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the same connections and procedures were followed in 
the frequency modulation tests. 

Briefly, four different dial-up connections were tested, 
each at four different transmit levels,  i.e., - 10 dbm, - 16 
dbm, -22 dbm and - 28 dbm. Each level  was tested 
continuously for 15 minutes (1.08 X lo6 bits transmitted) 
using a periodic pseudorandomly generated 256-bit pat- 
tern. After each of the four levels had been tested, the 
connection was redialed so that a total of 19  hours were 
used in testing each of the  four connections (i.e.,  8.2 X lo' 
bits transmitted per connection). The tests were all per- 
formed on a loop basis. The returned message  was com- 
pared bit-by-bit with the  transmitted message and each 
bit error, together with its distance from  the previous 
error, recorded on magnetic tape. This information was 
subsequently reduced to punched cards except for 91  of 
the 15-minute tests in which  five or fewer bit errors oc- 
curred. The absence of these tests from our  data is, if 
anything, a further verification of the model since their in- 
clusion could help to decrease the curvature in the plotted 
distribution  for very large t". 

The parameter most used for describing the  data trans- 
mission performance of a communication facility is the 
average error rate obtained  from the quotient of the  total 
number of bit errors  and  the  total number of bits trans- 
mitted during the test. This error  rate will generally vary 
widely with the connection and  the transmit level used. 
The degree of variation is indicated in  the published re- 
sults of the phase modulation tests which are repeated 
in Table 1. 

The similar results for the frequency modulation data 
that we have used exhibit an even larger variation  from 
level to level and between connections. It is, therefore, of 
considerable interest to find that  the same empirical distri- 
bution  as  obtained from the total  data fits equally well as 
a first approximation, independent of the transmit level 
and connection, and even for  the limited samples of a 
single 15-minute test. 

Figure I 4  Cumulated doubly logarithmic  plots for 
several  telephonic  connections  of  short 
duration,  considered  separately. 
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Table I Total  number of bits in error in phase 
modulation  test. For each connection,  the 
total number of bits transmitted per transmit 
level was 2.05 X IO’. 

Number of bits in error  transmit level 
Con- - 10 - 16 - 22 - 28 

nection dbrn dbm dbm dbm 

IV 162 617 2175 8430 
V 513 2272 6137 15,880 

VI 21 29 28 62 
VI1 79 417 3293 14,155 

Appendix 2 Distributions with infinite  population 

We would  like to reproduce from Ref. 6 some  comments 
that elaborate upon the remarks made in the text  concern- 
ing  distributions  with  infinite  population  moments. 

It has been said that such  variables are absurd, because 
all empirically  observed quantities being  finite, their 
sample  moments of all orders are themselves finite for 
finite  sample sizes. This is of course true; but it does not 
exclude that  the limits of the sample  moments  (correspond- 
ing to infinite  samples)  be  themselves  infinite. It has also 
been said that the asymptotic  behavior of  samples is 
practically  irrelevant,  because the sizes  of all empirical 
samples are by nature finite.  Even for continuing  series, 
one may  well argue for aprh moi, le Dkluge, and neglect 
any  time  horizon  longer than a man’s  life.  Hence the 
behavior  of the moments for infinite  sample sizes  may 
seem unimportant. All this is  again  perfectly true, but all 
that it actually  implies  is that the only  meaningful  conse- 
quences  of  infinite population moments are those  relative 
to the sample  moments of increasing subsets of our various 
bounded universes. Here, the situation is basically as 
follows  (we  shall  use  second  moments for illustration). 

There is no question that, wherever sample  second 
moments are empirically  observed to rapidly  “stabilize” 
around the value  corresponding to the total set, it is use- 
ful to take that value as an estimate of the population 
moment of a conjectural  infinite population, from which 
the sample  could  have  been  drawn.  But  suppose that the 
sample  second  moments  corresponding to increasing  sub- 
sets  vary  widely (Figure 15), even  when the sample size 
approaches the maximum  imposed by the subject matter. 
From the viewpoint  of  sampling, the distribution must 
be  interpreted as such that even the largest  available 
sample  is too small for reliable  estimation of the popu- 
lation second  moment, or-in other words-that a wide 
range of values  of the population  second  moment are 
equally  compatible  with the data. Insofar as the high- 
order moments are concerned,  such an erratic behavior  is 
almost the rule, and it is  therefore prudent not to make 
use  of  them.  But  most statistical procedures do require 

234 first and second  moments, and there it frequently turns  out 

moments 

J. M. BERGER  AND B. MANDELBROT 

that the reasonable range of moment  estimates happens 
to include the value  “infinity,”  implying that facts can be 
equally well  described  by  assuming that  the “actual” 
moment  is  extremely  large but finite, or by assuming that 
it is infinite. 

In order to motivate the alternative that we prefer,  let 
us point out that a realistic  scientific  model  must not 
depend too critically upon quantities that are difficult to 
measure. The finite-moment  model  is  unfortunately  very 
sensitive to the value  of the moment  estimate and there 
are many other ways in which the first  assumption, which 
of course is the more  reasonable a priori, also  happens 
to be by far the more  cumbersome  analytically. The second 
assumption, on the contrary, leads to simple  analytical 
developments, and the rapidity of growth of the sample 
moment can be so adjusted that it would  lead to absurd 
results  only if one applied it  to “infinite”  samples, that is, 
if one raised  problems  devoid of concrete  meaning. 
Actually,  infinity is always a relative matter, entirely  de- 
pendent upon the statistician’s span of interest; as the 
maximum  useful  sample  size  increases, the range of the 
estimates of the second  moment will steadily  narrow. 
Hence,  beyond a limit, the second  moments of some 
variables may have to be  considered as actually  being 
finite;  conversely, there are variables for which the second 
moment  must  be  considered as being  finite  only if the 
useful  sample  size  is shorter than some  limit. In other 
words, there is no danger in assuming, as we shall do, 

Figure I5 Record of successive  values of 

the  sample mean of the  sequence Urn, 
when U, is a  Paretian  random variable 
of exponent 0.5. 
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that  an intrinsically bounded variable is drawn at ran- 
dom  from an infinite population of unbounded variables 
having infinite moments. 

Actually, our use of infinity is a most  common 
one in statistics, insofar as it concerns the function 
max (UI, u2, - - - uN) of the observations. From  this view- 
point, it would seem to be improper even to use variables 
with infinite spans; however, it is well known in statistics 
that little  could be  done otherwise: one even uses the 
Gaussian to represent the height of adult humans, which 
is surely positive! 

From the  erratic behavior of sample moments, it foI- 
lows that a substantial portion of the usual  methods of 
statistics should  be expected to fail, except if extreme care 
is exerted. This failure has  of course  often been observed 
empirically, and has perhaps contributed to the disrepute 
in which many writers hold the law of Pareto;  but it is 
clearly unfair to blame a formal expression for  the compli- 
cations made inevitable by the  data. For Paretian laws 
with 2 < a < 3, second moments exist, but concepts 
based upon  thud  and  fourth moments, such as Pearson’s 
measures of skewness and of kurtosis, are meaningless. 

The unusual behavior of the moments of Paretian distri- 
butions  can  be used to introduce the least precise interpre- 
tation of the validity of the law of Pareto. For example, 
if the first moment is infinite, the function 1 - F(u) must 
decrease slower than l /u when u tends to infinity. In this 
case, the behavior of F(u) in  the tails is very important, 
and,  in  the first approximation, it may be very useful to 
approximate it by the  form Cu-“, with 0 < a < 1 ; this 
can never lead to harm,  as long as one limits oneself to 
consequences that are not very sensitive to the  actual value 
of a. If on  the  contrary  the  tail is very short (say if moments 
are finite up to the  fourth order) the behavior of the func- 
tion F(u) for large u is far less important to represent than 
its behavior elsewhere; hence, one will risk little harm 
with interpolations by the Gaussian or  the  lognormal 
distribution. 

Footnotes 
Footnote 1. Although the validity of a specific  scientific 
claim cannot be  influenced  by facts concerning other disci- 
plines, we  wish to point out that the fundamental idea of 
this paper was  suggested  by,  and the techniques used are 
to be found in, the extensive  work  which one of the authors 
(B.M.) has devoted to “Paretian” phenomena in many 
different  contexts. The reader who  wishes to use the pres- 
ent work  may therefore be interested in examining those 
references. 
Footnote 2. We  have  discovered that  our Assumption 
(C)  has already been  anticipated in Ref. 12. However, 
Mertz appears to share the general  opinion on error cluster- 
ing  and  avoids  anything  resembling our Assumption (B), by 
taking the law of Pareto under the truncated form P ( t )  = 
(1 + t /h)-“.  Note also that many of the statistics that he 
uses  (e.g., long-term averages) do not exist for the basic 
distribution and are misleading. 

Footnote 3. Most  books on probability, particularly the 
older ones, contain extensive  studies of coin  tossing. A use- 
ful modem reference  is  Feller’s book.13 The probability for 
the distance  between roots was  known at least  as early as 
1843. See  Ref. 15. Coin tossing has been  discussed in 

great detail by Emile  Borel, and almost  any of his many 
popular books contains many  pages on this topic. These 
comments are addressed to the Parisian philosophers of 
1900, but American engineers of 1963 should not  dismiss 
them for that reason, since the “common  sense” arguments 
of Borel’s opponents are spontaneously  re-invented by 
anybody  who  first approaches these  problems. Let us quote 
from p. 48 of Ref. 16: “Suppose that the 2,000,000 adults 
living in Paris associate  themselves in teams of two, and 
begin tomorrow morning to play at heads or tails until 
the winnings of both return to zero. If they  work  very 
fast, they  may go through a play per second, that is, 
through 10,000,000 plays per year. Well, one must  predict 
that after 10 years, 100 couples  will still be  playing,  and 
that, if the players entrust their interests to their heirs, 10 
games or so will still be  continuing after 1000 years.” 

Footnote 4. An earlier example of a singular perturbation 
is  linked  with the problem of the limitation of the propa- 
gation of errors that may occur on slightly  noisy  channels 
(see Ref. 17). 
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