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The prices of assets evolve in a random manner. This means that stock prices, interest rates,
foreign exchange rates, and commodity prices are largely unpredictable. Unpredictable does not mean
hopeledy irrdlevant. Indeed it is important that we understand the probability process driving prices
because this hel ps us develop correct vauation models. Estimates of expected returnsand volatilitiesand
their effects on assat and derivative prices are essentid in financia decison making.

A stochastic process is a sequence of observations from a probability distribution. Rolling dice
at regular time intervalsis a stochastic process. In this case the ditribution is stable because the possible
outcomes do not change from one rall tothenext. Ralling a6-5threetimesinarow, whilehighly unlikely,
in no way changes the probability of rolling another 6-5. A changing distribution, however, would be the
case if we drew acard from adeck without replacing the previously drawn cards. Real world asset prices
probably come from changing digtributions though it is difficult to determine when a digtribution has
changed. Empirica andysisof past datacan be useful in that context - not to predict the future but to know
when the numbers are coming out according to different bounds of probability.

In around 1827, the Scottish scientist Robert Brown observed the random behavior of pollen
particles suspended in water. This phenomenon cameto be known asBrownian Motion. About 80 years
passed before Einstein developed the mathematica properties of Brownian motion. Thisisnot to suggest
that no work was being donein theinterim but scientists did not ways know what other work was being
done. Itisnot surprising that it was Einstein who received most of the credit.

Let usgtart by assuming that a series of numbersis coming out of astandard normal (bell-shaped)
probability distribution. Let this number be denoted as , (t) wheret denotes the point intime. Since the
numbers are of the standard norma type, this means they on average equd zero and have a slandard
deviaion of 1. Numbers like this have very limited properties and in this form are not very useful for
modeling assat prices. Let us transform these numbers into another process. Suppose we are currently
at timet. Take any number you would likeand call it W,. Thisisour starting point. Now move ahead to
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time t+1 by drawing anumber from the sandard norma probability digribution. Cal it , ;. A very Smple
transformation of the standard normd variable into the W variable would beto add , ,, to W, toget W,,,.
Another smple transformation would be to multiply , .., by aterm we cdl dt, which is the length of time
that elapses between t and t+1. If that time interva happened to be one minute, dt would be
1/(60* 24* 365), or in other words, the fraction of ayear that €l apses between t and t+1.

One reason we like to multiply ,.,, by a time factor is that we would like our mode to
accommodate time intervals between t and t+1 of different lengths. These statistica shocks that are the
source of randomness might be larger if they were spread out over alonger time period; hence, we need
to scale them by afunction of time. In fact, to mode asset prices evolving continuoudy, we need the
interva betweent and t+1 to be as short aspossble. Mathematicianssay that “inthelimit” (meaning dmost
there but not quite), dt will approach zero. Unfortunately, the modd W,,; = W, + , ., dt will giveus a
problem when dt is nearly zero. That comes from the fact that the variance of W,,, will be nearly zero.
That is because dt isvery smal and to obtain the variance, we have to squareit, which drivesit even close
to zero. Thus, the variable W will have no variance, which takes away its randomness. Because it does
not vary, we cannot even cdl it a“varigble’ anymore.

The problem is best solved by multiplying , . by the square root of dt:

Wy, ™ W% .

Then when we square it to take the variance, we obtain dit.

Thismodd has many convenient properties. Supposewe areinterested in predicting afuturevaue
of W, say at timet +J. Then the expected vaue of W, , ; isW,. That is because the expected random
change inthe processiszero. If you start off a W, and keep incrementing it by vauesthat averageto zero,
you are expected to get nowhere. Thevarianceof W, , ;ist+J - t =J, or in other words, however, much
time el gpses between now, timet, and the future point, time't + J.

Thisisthe process caled Brownian Motion. Now let ustake the difference between W, and W,
and denote it as dW,, which will be defined as
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aw, * ,fdt

This process, theincrement to the Brownian Motion, iscalled aWiener process, named after the American
mathematician, Norbert Wiener (1894-1964), who did important work inthisarea. Inthefied of financia
derivatives, we are more interested in the process dw, than in the process W,. We shdl transform dw,
into something more useful for modeling asset prices a alater point.!

It is perhaps important to note that the mathematics necessary to define the expected value and
variance require the mathematica technique of integration. The ordinary rules of integration,
however, do not automaticaly apply when the terms are stochadtic. Fortunately, work by the Japanese
mathematician K. 1t6 proved that the integral, defined as a stochastic integral, does exis though with a
dightly different definition. Consequently many of therulesof ordinary integration apply inamilar or dightly
different forms.

One interesting property of the Wiener process is that when you square it, it becomes perfectly
predictable. Thisseemsto beared puzzler. How can you generate random numbers, square them and
find them perfectly predictable? Suppose we draw a standard norma random variable, ,,. We multiply
it by the square root of the time interva dt. We know that this transformed vaue is unpredictable but we
know its expected value and its variance. The expected vaue is obvioudy zero. Using the rule thet the
variance of a congtant times a random variable is the constant squared times the variance of the random
variable, we seethat its variance is dt.?

Note, however, that if we define the variable of interest as dW,?, we get a different result. To
determine dwW,2 we smply draw thevaue of ,,, multiply it by the square root of dt and square the entire
expresson. Thisequds,’dt. Thevariance of thisexpression isfound by sguaring dt and multiplying it by

the variance of ,2. By definition, however, dl vaues of dt where k > 1 are zero. In other words, the

1The terms Brownian Motion, Wiener process and Itd process are often used interchangeably.

2Remember that aw, =, t‘/at'. Squaring the sguare root term gives dt. Thisis then multiplied by thevariance of ,; which
is1.0.
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length of the time intervd is S0 short that squaring it makes it shorter and effectively zero. The expected
vaue of dw,? isthe expected vaue of ,%dt. Thiswill be dt times the expected vaue of , 2. So we must
evauate E, 2. First let ususethewel-known result that the variance of any random variable x is defined
asE[¥] - E[x]%. Since ,, isastandard normd vaiable, thenVarl,] =E[, 4 - E[,]*= 1. Weknow that
E,]=0s0E[,? =1 Thus, E[dW,] = 1*dt = dt. Since Var[dW,3] =0, E[dW?] =dW,2=dt. Inother
words, any variable that has zero variance can be expressed as its expected value. So remember this
important result: dw,? = dt! We shal seeit again.

Why do thesethings metter? They arethefoundations of the most fundamental model used to price
options. Let uslook a how this process can be used to model stock price movements. We know that
stock price fluctuations have severd important characterigtics. Firgt, over thelong run, stock prices go up.
They are said to “drift.” This represents the return from bearing risk. The Wiener process does not drift,
but as we show later, it is easy to make it drift either upward or downward. Second, stock prices are
random. We know that Wiener processes are random, though we cannot use the basic Wiener process
for every stock because different stocks have different volatilities. We can, however, transform the basic
Wiener processto giveit adifferent volatility. Third, it should be harder to forecast stock prices further
into the future than nearby. That does not mean that stock pricesare very predictable but that the margin
of error, which isrelated to the variance of the future stock price, should be greater when predicting far into
the future than when predicting into the near future. The find property isthat a stock price should never
be alowed to become negeative. Corporate shareholdershave limited liability so the minimum vaue of their
sharesis zero.

The properties of astock’ s return can be described by its mean and variance® Let E[R] be the
stock’ s expected return and F? be the stock’ s variance over a period of ayear.* Then F is the standard
deviation, which is the square root of the variance. If wehaveagood mode it will have an expected value

and standard deviation equal to these vaues.

3QOther properties like skewness might be important but we ignore them for this model.

41t is common but not required to express expected returns and variances on an annual basis.
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Let R be the stock’ s return, its price change divided by itsbase price, over the holding period h.
Now set Rh equd to E[R]h + g, where g represents the random component of the stock’s return. We
do not yet know what g, is but we assumeit isinfluenced by the variance. Now, let usforce the expected
vaue of our modd to E[R]h. Thisiseasly done by letting E[g] = 0. Thus, we must keep this constraint
in mind when we look for a suitable form for g.

Now let usforcethe mode to havethe correct variance. If thevariance over ayear isF?, then the
variance over the holding period hishF2. The variance of our modd should be suchthat it equalshF2. So
far our mode hastwo termsE[R]h+ g.. Theterm E[R]hisacongant soit hasno variance. Thus, weneed
to make sure that Var[g] = hF%

Firdt let us define h to bethe standard timeincrement in astochastic process of dt. One modd that
has the gppropriate variance is g, " F,tﬁ , whichisamply FdW,. Thisis just a transformed Wiener
process with the transformation coming from multiplying it by the stock’ s standard deviation. Remember
that we dso have to have the expected vaue of g, equa to zero but that requirement isupheld becausewe
aready know that g = dW, and E[dW/] = 0.

Now our model looks like this

R " E(Rdt % F,/dt

Doesthismode havethe other propertieswewant it to have? If S; isthe current stock price, then
thestock pricedfter theperiod dtis Sy, * S(1 % E[Rldt % F,/dt). Whatisthevarianceof thisfuture
stock price? Without getting into the technicd details the variance will indeed be larger if thetimeintervd
islarger.’

Finaly, the modd must not permit the stock price to ever go below zero. Let uswrite the modd
in the following form

5A simple proof of this point is worth noting. The variance of S, is completely determined by ,, dt and F. The only
one of these three values that automatically gets larger the further out intimeyou moveisthetimeindicator, dt. Thelarger isdt, the
larger isthe variance of S.. A forma mathematical proof is technically required but you can be assured that the proof holds up.
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d=§. " E[Rldt % F,y/dt.

Multiplying through by S makes everything on the right-hand sde be multiplied by S. If S ever reaches
zero then dS is stuck at zero. Zero is said to be a natura absorbing barrier, which is equivaent to
bankruptcy. It should be noted that the rules governing Brownian motion do not alow the processto go
through zero to anegative value. Onceit hits zero, the process stops.

Onefind adjusment is necessary. Mogt of the time the annualized expected return is written as
ather " or 1. We shdl choosethe former. Thus, the model iswritten as

d
.?St. " dt % Fdw,

t

whereit is understood that dW, * ,tﬁ. A gtochastic processes of this type is cdled an 1t6 process.
It is more generdly stated intheform, dS ="*(S;t)dt + F(S,t)dW, where the expected vaue and variance
are allowed to changewith Sand t.

To recap, the mode alows us to replicate the behavior of the stock over a short holding period.
We have taken the basic Brownian Motion process and converted it into aform that models stock price
movements. This model has many convenient and reasonable properties. We refer to the process as
Geometric Brownian Motion. Itis“geometric’ in the sensethat proportiona changes, which iswhat we
mean by the percentage change, in the stock price follow this stochastic process. Without providing the
mathemética details, we can say that the returns on stocks follow alognorma didtribution. Thisis not the
normd, or bell-shaped curve. A lognormal distribution is skewed toward positivereturnsin contrast to the
normd digtribution, which is symmetric. A lognormd digtribution doesimply, however, that the logarithm
of the returns comes from the norma or bell-shaped digtribution.® These properties are al desirable and

fairly reasonable from an empiricad standpoint.

5This type of processis also sometimes called alognormal diffusion process.
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Of course, no mode will reproduce perfectly the process in which stock returns are generated.
The real world can rarely be reduced to a set of mathematical equations. But asis nearly dwaysthe case,
if a set of mathematical equations can reproduce the basic manner in which a red-world phenomenon
occurs, it can have many uses. One of these usesisin pricing derivatives on assets that follow the process

described by the mathematical model covered here.

References

These notes are adapted from my article

Chance, D. M. “The ABCsof Geometric Brownian Maotion.” Derivatives Quarterly 1
(Winter, 1994), 41-47.

For other treatments of this modd in finance see

Dothan, M. U. Pricesin Financial Markets. New York: Oxford University Press
(1990), Chs. 7,8.

Duffie, D. Dynamic Asset Pricing Theory, 2nd. ed. Princeton: Princeton University
Press (1996), Ch. 5.

Duffie, D. Security Markets. Sochastic Models. Boston: Academic Press(1988), Chs.
21-23.

Haey, C. W. and L. D. Schdl. “Stochastic Cdculusand Derivation of the Option Pricing
Modd,” Appendix 10A of The Theory of Financial Decision Making, 2nd. ed., New
Y ork: McGraw-Hill (1979).

Hull, J. C. Options, Futures and Other Derivative Securities, 4" ed. Upper Saddle
River, NJ Prentice-Hall (200), Ch. 10.

Ingersoll, J. E. Theory of Financial Decision Making. Totowa, NJ. Rowman &
Littlefield (1987), Ch. 16.

Jarrow, R. and A. Rudd. Option Pricing. Homewood, Illinois: Irwin (1983), Ch. 7.

D. M. Chance, TN96-04 7 Modeling Asset Prices as Stochastic Processes |



Mdliaris, A. G. and W. A. Brock. Sochastic Methods in Economics and Finance.
New Y ork: North Holland Publishing Co. (1983), Ch. 2.

Merton, R. C. “On the Mathematics and Economics Assumptions of Continuous-Time

Models” Financial Economics: Essays in Honor of Paul Cootner, ed. by W. F.
Sharpe and C. M. Cootner. Englewood Cliffs, NJ: Prentice-Hall (1982).

Neftci, S. N. An Introduction to the Mathematics of Financial Derivatives. San Diego:
Academic Press (2000), Chs. 6,8

Nidsen, L. T. Pricing and Hedging of Derivative Securities. Oxford: Oxford University Press
(1999), Chs. 1-3.

Shimko, D. C. Financein Continuous Time Miami: Kolb Publishing (1992), Ch. 1.
Smith, C. W. “Appendix: AnIntroduction to Stochagtic Calculus.” The Modern Theory
of Corporate Finance, ed. by M. C. Jensen and C. W. Smith. New Y ork: McGraw-Hill
(1984).

For more of the mathematical theory, some excedllent references are:

Cox, D. R. and H. D. Miller. The Theory of Stochastic Processes. London: Chapman
& Hall (1965), Chs. 1, 2, 5.

Karatzas, |. and S. E. Shreve. Brownian Motion and Sochastic Calculus. New Y ork:
Springer-Verlag (1988), Ch. 2.

Kalin, S. and H. M. Taylor. A First Course in Sochastic Processes. New Y ork:
Academic Press (1975), Ch. 7.

Kalin, S. A Second Course in Sochastic Processes. New York: Academic Press
(1981), Ch. 15.

Resnick, S. 1. Adventuresin Stochastic Processes. Boston: Birkhauser (1992), Ch.
6.

Thefirst and classic gpplications of Brownian mation in finance were

D. M. Chance, TN96-04 8 Modeling Asset Prices as Stochastic Processes |



Bachdier, L. “Theory of Speculation.” English trandation by A. J. Boness, The Random
Character of Sock Market Prices, ed. P. Cootner. Cambridge, Mass. TheM.1.T. Press
(1964), 17-78.

Osborne, M. F. M. “Brownian Mation in the Stock Market.” Operations Research 7
(March-April, 1959), 145-173.

For commentary on Bachelier’ swork see

Suliven, E. J. and T. M. Weithers. “Louis Bachdlier: The Father of Modern Option
Pricing Theory.” Journal of Economic Education 22 (Spring, 1991), 165-170.

An excdlent higtoricd treatise on Brownian maotion isfound in

Maocchi, R. “The Case of Brownian Motion.” British Journal of the History of
Science 23 (1990), 257-283.

D. M. Chance, TN96-04 9 Modeling Asset Prices as Stochastic Processes |



