
1D. M. Chance, TN96-04 Modeling Asset Prices as Stochastic Processes I

TEACHING NOTE 96-04:

MODELING ASSET PRICES AS STOCHASTIC PROCESSES I

Version date: September 1, 2000 C:\ClassMaterial\Teaching Notes\TN96-04.WPD

The prices of assets evolve in a random manner.  This means that stock prices, interest rates,

foreign exchange rates, and commodity prices are largely unpredictable.  Unpredictable does not mean

hopelessly irrelevant.  Indeed it is important that we understand the probability process driving prices

because this helps us develop correct valuation models.  Estimates of expected returns and volatilities and

their effects on asset and derivative prices are essential in financial decision making.

A stochastic process is a sequence of observations from a probability distribution.  Rolling dice

at regular time intervals is a stochastic process.  In this case the distribution is stable because the possible

outcomes do not change from one roll to the next.  Rolling a 6-5 three times in a row, while highly unlikely,

in no way changes the probability of rolling another 6-5.  A changing distribution, however, would be the

case if we drew a card from a deck without replacing the previously drawn  cards. Real world asset prices

probably come from changing distributions though it is difficult to determine when a distribution has

changed.  Empirical analysis of past data can be useful in that context - not to predict the future but to know

when the numbers are coming out according to different bounds of probability.  

In around 1827, the Scottish scientist Robert Brown observed the random behavior of pollen

particles suspended in water.  This phenomenon came to be known as Brownian Motion.  About 80 years

passed before Einstein developed the mathematical properties of Brownian motion.  This is not to suggest

that no work was being done in the interim but scientists did not always know what other work was being

done.  It is not surprising that it was Einstein who received most of the credit.

Let us start by assuming that a series of numbers is coming out of a standard normal (bell-shaped)

probability distribution.  Let this number be denoted as ,(t) where t denotes the point in time.  Since the

numbers are of the standard normal type, this means they on average equal zero and have a standard

deviation of 1.  Numbers like this have very limited properties and in this form are not very useful for

modeling asset prices.  Let us transform these numbers into another process.  Suppose we are currently

at time t.  Take any number you would like and call it Wt.  This is our starting point. Now move ahead to
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Wt%1 ' Wt % ,t dt.

time t+1 by drawing a number from the standard normal probability distribution.  Call it ,t+1.  A very simple

transformation of the standard normal variable into the W variable would be to add ,t+1 to Wt to get Wt+1.

Another simple transformation would be to multiply ,t+1 by a term we call dt, which is the length of time

that elapses between t and t+1.  If that time interval happened to be one minute, dt would be

1/(60*24*365), or in other words, the fraction of a year that elapses between t and t+1.

One reason we like to multiply ,t+1 by a time factor is that we would like our model to

accommodate time intervals between t and t+1 of different lengths.  These statistical shocks that are the

source of randomness might be larger if they were spread out over a longer time period; hence, we need

to scale them by a function of time.  In fact, to model asset prices evolving continuously, we need the

interval between t and t+1 to be as short as possible.  Mathematicians say that “in the limit” (meaning almost

there but not quite), dt will approach zero.  Unfortunately, the model Wt+1 = Wt + ,t+1dt will give us a

problem when dt is nearly zero.  That comes from the fact that the variance of Wt+1 will be nearly zero.

That is because dt is very small and to obtain the variance, we have to square it, which drives it even close

to zero.  Thus, the variable W will have no variance, which takes away its randomness.  Because it does

not vary, we cannot even call it a “variable” anymore.

The problem is best solved by multiplying ,t by the square root of dt:

Then when we square it to take the variance, we obtain dt.

This model has many convenient properties.  Suppose we are interested in predicting a future value

of W, say at time t + J.  Then the expected value of Wt + J is Wt.  That is because the expected random

change in the process is zero.  If you start off at Wt and keep incrementing it by values that average to zero,

you are expected to get nowhere.  The variance of Wt + J is t + J - t = J, or in other words, however, much

time elapses between now, time t, and the future point, time t + J.

This is the process called Brownian Motion.  Now let us take the difference between Wt+1 and Wt

and denote it as dWt, which will be defined as



1The terms Brownian Motion, Wiener process and Itô process are often used interchangeably.

2Remember that .  Squaring the square root term gives dt.  This is then multiplied by the variance of ,t whichdW t ' ,t dt
is 1.0.
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dWt ' ,t dt.

This process, the increment to the Brownian Motion, is called a Wiener process, named after the American

mathematician, Norbert Wiener (1894-1964), who did important work in this area.  In the field of financial

derivatives, we are more interested in the process dWt than in the process Wt.  We shall transform dWt

into something more useful for modeling asset prices at a later point.1

It is perhaps important to note that the mathematics necessary to define the expected value and

variance require the mathematical technique of integration.  The ordinary rules of integration,

however, do not automatically apply when the terms are stochastic.  Fortunately, work by the Japanese

mathematician K. Itô proved that the integral, defined as a stochastic integral, does exist though with a

slightly different definition.  Consequently many of the rules of ordinary integration apply in similar or slightly

different forms.

One interesting property of the Wiener process is that when you square it, it becomes perfectly

predictable.  This seems to be a real puzzler.  How can you generate random numbers, square them and

find them perfectly predictable?  Suppose we draw a standard normal random variable, ,t.  We multiply

it by the square root of the time interval dt.  We know that this transformed value is unpredictable but we

know its expected value and its variance.  The expected value is obviously zero.  Using the rule that the

variance of a constant times a random variable is the constant squared times the variance of the random

variable, we see that its variance is dt.2

Note, however, that if we define the variable of interest as dWt
2, we get a different result.  To

determine dWt
2 we simply draw the value of ,t, multiply it by the square root of dt and square the entire

expression.  This equals ,t
2dt.  The variance of this expression is found by squaring dt and multiplying it by

the variance of ,t
2.  By definition, however, all values of dtk where k > 1 are zero.  In other words, the



3Other properties like skewness might be important but we ignore them for this model.

4It is common but not required to express expected returns and variances on an annual basis.
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length of the time interval is so short that squaring it makes it shorter and effectively zero.  The expected

value of dWt
2 is the expected value of ,t

2dt.  This will be dt times the expected value of ,t
2.  So we must

evaluate E[,t
2].  First let us use the well-known result that the variance of any random variable x is defined

as E[x2] - E[x]2.   Since ,t is a standard normal variable, then Var[,t] = E[,t
2] - E[,t]2 = 1.  We know that

E[,t] = 0 so E[,t
2] = 1.  Thus, E[dWt

2] = 1*dt = dt.  Since Var[dWt
2] = 0, E[dWt

2] = dWt
2 = dt.  In other

words, any variable that has zero variance can be expressed as its expected value.  So remember this

important result: dWt
2 = dt!  We shall see it again.

Why do these things matter?  They are the foundations of the most fundamental model used to price

options.  Let us look at how this process can be used to model stock price movements.  We know that

stock price fluctuations have several important characteristics.  First, over the long run, stock prices go up.

They are said to “drift.”  This represents the return from bearing risk.  The Wiener process does not drift,

but as we show later, it is easy to make it drift either upward or downward.  Second, stock prices are

random.  We know that Wiener processes are random, though we cannot use the basic Wiener process

for every stock because different stocks have different volatilities.  We can, however, transform the basic

Wiener process to give it a different volatility.  Third, it should be harder to forecast stock prices further

into the future than nearby.  That does not mean that stock prices are very predictable but that the margin

of error, which is related to the variance of the future stock price, should be greater when predicting far into

the future than when predicting into the near future.  The final property is that a stock price should never

be allowed to become negative.  Corporate shareholders have limited liability so the minimum value of their

shares is zero.

The properties of a stock’s return can be described by its mean and variance.3  Let E[R] be the

stock’s expected return and F2 be the stock’s variance over a period of a year.4  Then F is the standard

deviation, which is the square root of the variance.  If we have a good model it will have an expected value

and standard deviation equal to these values. 



5A simple proof of this point is worth noting.  The variance of St+dt is completely determined by ,t, dt and F.  The only
one of these three values that automatically gets larger the further out in time you move is the time indicator, dt.  The larger is dt, the
larger is the variance of St+dt.  A formal mathematical proof is technically required but you can be assured that the proof holds up.
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Rt ' E(R)dt % F,t dt

Let Rth be the stock’s return, its price change divided by its base price, over the holding period h.

Now set Rth equal to E[R]h + gt, where gt represents the random component of the stock’s return.  We

do not yet know what gt is but we assume it is influenced by the variance.  Now, let us force the expected

value of our model to E[R]h.  This is easily done by letting E[gt] = 0.  Thus, we must keep this constraint

in mind when we look for a suitable form for gt.

Now let us force the model to have the correct variance.  If the variance over a year is F2, then the

variance over the holding period h is hF2.  The variance of our model should be such that it equals hF2.  So

far our model has two terms E[R]h + gt.  The term E[R]h is a constant so it has no variance.  Thus, we need

to make sure that Var[gt] = hF2.

First let us define h to be the standard time increment in a stochastic process of dt.  One model that

has the appropriate variance is , which is simply FdWt.  This is just a transformed Wienergt ' F,t dt

process with the transformation coming from multiplying it by the stock’s standard deviation.  Remember

that we also have to have the expected value of gt equal to zero but that requirement is upheld because we

already know that gt = dWt and E[dWt] = 0.

Now our model looks like this

Does this model have the other properties we want it to have?  If St is the current stock price, then

the stock price after the period dt is .  What is the variance of this futureSt%dt ' St(1 % E[R]dt % F,t dt)

stock price?  Without getting into the technical details the variance will indeed be larger if the time interval

is larger.5 

Finally, the model must not permit the stock price to ever go below zero.  Let us write the model

in the following form



6This type of process is also sometimes called a lognormal diffusion process.
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dSt

St

' E[R]dt % F,t dt .

dS t

S t

' "dt % FdWt,

Multiplying through by St makes everything on the right-hand side be multiplied by St.  If St ever reaches

zero then dSt is stuck at zero.  Zero is said to be a natural absorbing barrier, which is equivalent to

bankruptcy.  It should be noted that the rules governing Brownian motion do not allow the process to go

through zero to a negative value.  Once it hits zero, the process stops.

One final adjustment is necessary.  Most of the time the annualized expected return is written as

either " or µ.  We shall choose the former.  Thus, the model is written as

where it is understood that .  A stochastic processes of this type is called an Itô process.dWt ' ,t dt

It is more generally stated in the form, dSt = "(S,t)dt + F(S,t)dWt where the expected value and variance

are allowed to change with S and t.

To recap, the model allows us to replicate the behavior of the stock over a short holding period.

We have taken the basic Brownian Motion process and converted it into a form that models stock price

movements.  This model has many convenient and reasonable properties.  We refer to the process as

Geometric Brownian Motion.  It is “geometric” in the sense that proportional changes, which is what we

mean by the percentage change, in the stock price follow this stochastic process.  Without providing the

mathematical details, we can say that the returns on stocks follow a lognormal distribution.  This is not the

normal, or bell-shaped curve.  A lognormal distribution is skewed toward positive returns in contrast to the

normal distribution, which is symmetric.  A lognormal distribution does imply, however, that the logarithm

of the returns comes from the normal or bell-shaped distribution.6  These properties are all desirable and

fairly reasonable from an empirical standpoint.
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Of course, no model will reproduce perfectly the process in which stock returns are generated.

The real world can rarely be reduced to a set of mathematical equations.  But as is nearly always the case,

if a set of mathematical equations can reproduce the basic manner in which a real-world phenomenon

occurs, it can have many uses.  One of these uses is in pricing derivatives on assets that follow the process

described by the mathematical model covered here. 
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