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Abstract. The random-walk (white-noise) model and the harmonic model are two polar models in linear

systems. A model in between is color chaos, which generates irregular oscillations with a narrow frequency

(color) band. Time-frequency analysis is introduced for evolutionary time-series analysis. The deterministic

component from noisy data can be recovered by a time-variant filter in Gabor space. The characteristic

frequency is calculated from the Wigner decomposed distribution series. It is found that about 70 percent of

fluctuations in Standard & Poor stock price indexes, such as the FSPCOM and FSDXP monthly series, detrended

by the Hodrick-Prescott (HP) filter, can be explained by deterministic color chaos. The characteristic period of

persistent cycles is around three to four years. Their correlation dimension is about 2.5.

The existence of persistent chaotic cycles reveals a new perspective of market resilience and new sources of

economic uncertainties. The nonlinear pattern in the stock market may not be wiped out by market competition

under nonequilibrium situations with trend evolution and frequency shifts. The color-chaos model of

stock-market movements may establish a potential link between business-cycle theory and asset-pricing theory.
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1 Introduction

Finance theory in equilibrium economics is based on the random-walk model of stock prices. However, there
is a more general scenario: a mixed process with random noise and deterministic patterns, including the
possibility of deterministic chaos.

Chaos is widely found in the fields of physics, chemistry, and biology. But the existence of economic chaos
is still an open issue (Barnett and Chen 1988; Brock and Sayers 1989; Ramsey, Sayers, and Rothman 1990;
DeCoster and Mitchell 1991, 1994; Barnett et al. 1994). Trends, noise, and time evolution caused by structural
changes are the main difficulties in economic time-series analysis. A more generalized spectral analysis is
needed for testing economic chaos (Chen 1988, 1993).
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Measurement cannot be separated from theory. There are two polar models in linear dynamics: white noise
and harmonic cycles. Correlation analysis and spectral analysis are complementary tools in the stationary
time-series analysis. White noise has a zero correlation and a flat spectrum, while a harmonic cycle has an
infinite correlation and a sharp spectrum with zero width. Obviously, real data fall between these two
extremes.

A major challenge in economic time-series analysis is how to deal with time evolution. Econometric
models, such as the ARCH and GARCH models with changing means and variances, are parametric models in
the nonstationary stochastic approach (Engle 1982; Bollerslev 1986). A generalized spectral approach is more
useful in studies of deterministic chaos (Chen 1993).

It is known that a stationary stochastic process does not have a stationary or continuous instantaneous
frequency in time-frequency representation. Therefore, we do not use the terms “stationary” and
“nonstationary,” which are familiar in the stochastic approach. A new representation will introduce some
conceptual changes. There are many fundamental differences between a nonlinear deterministic approach
and a linear stochastic approach, including time scales, observation references, and testing philosophy.

From the view of theoretical studies, the discrete-time white chaos generated by nonlinear difference
equations is tractable in analytic mathematics, and compatible with the optimization rationality (Day and
Benhabib 1980; Benhabib 1990). From the needs of empirical analysis, the continuous-time color chaos
generated by nonlinear differential equations is more capable of describing business cycles than white chaos,
since their erratic fluctuations and recurrent patterns can be characterized by nonlinear oscillations with
irregular amplitude and a narrow frequency (color) band in the spectrum (Chen 1988, 1993; Zarnowitz 1993).

We introduce the time-frequency representation as a nonparametric approach of generalized spectral
analysis for the evolutionary time series (Qian and Chen 1996). The Wigner distribution in quantum
mechanics and the Gabor representation in communication theory were pioneered by two Nobel laureate
physicists (Wigner 1933; Gabor 1948). Applied scientists in signal processing have made fundamental progress
in developing efficient algorithms of time-frequency distribution series (Qian and Chen 1994a,b, 1996). These
are powerful tools in our studies of economic chaos (Chen 1994, 1995, 1996).

In dealing with problems of growing trends and strong noise, we apply the Hodrick-Prescott (HP) filter for
trend-cycle decomposition (Hodrick and Prescott 1981) and time-variant filters in Gabor space for pattern
recognition (Qian and Chen 1996, Sun et al. 1996). We got clear signals of low-dimensional color chaos from
Standard & Poor stock market indicators. The chaos signals can explain about 70 percent of stock variances
from detrended cycles. Its characteristic period is around three to four years, and the correlation dimension is
about 2.5. The time paths of their characteristic period is useful in analyzing cause and effect from historical
events. Clearly, the color-chaos model describes more features of market movements than the popular
random-walk model.

The newly decoded deterministic signals from persistent business cycles reveal new sources of market
uncertainty, such as changing growth-trends and shifting business-cycle frequency. Time-frequency analysis
develops new methods for economic diagnostics and risk analysis. Friedman’s argument against irrational
speculators ignores the issue of information ambiguity in evolving economy and financial risk for rational
arbitrageurs (Friedman 1953). A nonlinear pattern in the stock market may not be wiped out by market
competition, because complexity and diversity in market behavior are generated by changing uncertainty,
nonlinear overshooting, and time delays in learning and feedback mechanisms (Chen 1988).

2 Roles of Time Scale and Reference Trend in Representation of Business Cycles

A distinctive problem in economic analysis is how to deal with growing trends in an aggregate economic time
series. Unlike laboratory experiments in natural sciences, there is no way to maintain steady flows in
economic growth and describe business cycles by invariant attractors. Many controversial issues in
macroeconomic studies, such as noise versus chaos in business cycles, are closely related to competing
detrending methods (Chen 1988, 1993; Ramsey, Sayers, and Rothman 1990; Brock and Sayers 1988).

The first issue is the time scale in economic representation. A continuous time representation in the form of
[X (t),dX (t)/dt, . . . ,dN X (t)/dtN ] is widely used in science and engineering. It is an empirical question
whether the dynamical system can be well approximated by a low-order vector up to the N -th order of
derivatives. In Hamiltonian mechanics, N is 1 for mechanical systems, because its future movement can be
determined by Newton’s law of motion in addition to initial conditions in position and momentum. It means
that both level (position) and rate (velocity) information are important in characterizing the underlying
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dynamical system. Chaos theory in nonlinear dynamics further emphasizes the role of history, because a
nonlinear deterministic system is sensitive to its initial conditions. In business-cycle studies, there is no
consensus on the order of N . The martingale theory of the stock market simply ignores the path-dependent
information in the stock market. We will demonstrate that both level and rate information are important when
correlations are not short during business cycles.

Econometricians use differences in the form of [X (t),1X (t), . . . , 1M X (t)] in parametric modeling. We
should note that these two representations are not equivalent. Mathematically, a one-dimensional differential
equation {dX (t)/dt = F [x, t ]} can be approximated by M -th order difference equations. Numerically, M
should be larger than 100 when the numerical error is required to be less than 1 percent. Many
econometricians favor the discrete-time difference equations instead of the continuous-time differential
equations because of their mathematical convenience in regression analysis. However, a discrete-time
representation is a two-order-lower approximation of a similar continuous-time system.

The issue of choosing an appropriate time-sampling rate is often ignored in econometric analysis. Chaotic
cycles in continuous time may look like noise if the sampling time interval is not small compared to its
fundamental period of cycles. This issue is important in pattern recognition. For example, annual economic
data are not capable of revealing the frequency pattern of business cycles. Numerically, a large time unit such
as the annual time series can easily obscure a cyclic pattern in the correlation analysis of business cycles.

A related issue is how to choose a reference trend or a proper transformation to simplify the empirical
pattern of business cycles. Suppose a new vector [G(t),C (t)] is defined in terms of the original vector
[X (t),dX (t)/dt ]. If C (t) is a bounded time series, then C (t) has a chance to be described by a mathematical
attractor, or a stationary stochastic process. In business-cycle studies, finding a proper transformation is called
the problem of trend-cycle decomposition, or, simply, detrending. In astronomy, the critical trend-cycle
problem was solved by Copernicus and Kepler by using a heliocentric reference system. In econometrics, the
choice of observation reference is an open issue in business cycle theory (Zarnowitz 1992).

The core problem in economic analysis is not noise-smoothing but trend-defining in economic observation
and decision making, because the observed patterns of business cycles are more sensitive to trend
perspectives than to smoothing techniques. A short-time deviation may be important for speculative
arbitrageurs, while the shape of the long-term trend can be critical to strategic investors. Certainly, investors in
a real economy have diversified strategies and time horizons. The interactive nature of social behavior often
forms some consensus on business cycles. This fact suggests that a relative preferred reference exists in
economic studies. We will show that the HP filter in trend-cycle decomposition is a promising way to define
the growth trend in business cycles.

It is the theoretical perspective that dictates the choice of a detrending approach. The econometric practice
of prewhitening data is justified by equilibrium theory, and is convenient for regression analysis. For example,
a Frisch-type, noise-driven model of business cycles will end with white noise after several damped
oscillations (Frisch 1933). For pattern recognition, a typical technique in science and engineering is to project
the data onto some well-constructed deterministic space to recover possible patterns from empirical time
series. Notable examples are the Fourier analysis and wavelets.

There are two criteria in choosing the proper mathematical representation: mathematical reliability and
empirical verifiability. Unlike experimental economics, macroeconomic time series are not reproducible in
history. Traditional tests in econometric analysis have limited power in studies of an evolutionary economy
containing deterministic components. For example, testing the whiteness of residuals or comparing
mean-squared errors have little power when the real economy is not a stationary stochastic process. A good
fit of past data does not guarantee the ability for better future predictions. The outcome of out-of-sample tests
in a simulation experiment depends on the choice of testing period, since structural changes vary in economic
history.

To avoid the above problems in time-frequency analysis, we will use historical events as natural
experiments to test our approach. Future laboratory experiments are possible in testing the martingale model
and the color-chaos model in market behavior.

3 Trend-Cycle Decomposition and Time Windows in Observation

The linear detrending approach dominates econometric analysis because of its mathematical simplicity. There
are two extreme approaches in econometric analysis: the trend-stationary (TS) approach of log-linear detrending
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(LLD) and the difference-stationary (DS) approach of first differencing (FD) (Nelson and Plosser 1982).

XFD(t) = log S(t)− log S(t − 1) = log

[
S(t)

S(t − 1)

]
(1)

XLLDc(t) = log S(t)− [a + bt ] (2)

A compromise between these two extremes is the HP filter (Hodrick and Prescott 1981). The HP smooth
growth trend {H Ps = G(t)} is obtained by minimizing the following function:

Min
∑

[X (t)− G(t)]2 + λ
∑
{[G(t + 1)− G(t)]− [G(t)− G(t − 1)]}2 (3)

Here, λ is 1,600 for quarterly data and 14,400 for monthly, suggested by Kydland. LLD cycles of XLLDc(t) are
residuals from the log-linear trend. The LLD trend can be considered as the limiting case of the HP trend
when λ goes to infinity for logarithmic data.

In principle, a choice of observation reference is associated with a theory of economic dynamics. Log-linear
detrending implies a constant exponential growth, which is the base case in the neoclassical growth theory.
The FD detrending produces a noisy picture that is predicted by the geometric random-walk model with a
constant drift (or the so-called unit-root model in econometric literature). The efficient-market hypothesis
simply asserts that stock price movement is a martingale that is unpredictable in finance theory.

Economically speaking, the FD detrending in econometrics implies that the level information in price
indicators can be ignored in economic behavior. This assertion may conflict with many economic practices,
since traders constantly watch economic trends, and no one will make an investment decision based only on
the current rate of price changes. Most economic contracts, including margin accounts in stock trading, are
based on nominal terms. The error-correction model in econometrics tried to remedy the problem by adding
some lagged-level information, such as using a one-year-before level as an approximation of the long-run
equilibrium (Baba, Hendry, and Starr 1992). Then comes the problem of what is the long-run equilibrium in
the empirical sense. Option traders based on the Black-Scholes model find that it is extremely difficult to
predict the mean, variance, and correlations from historical data (Merton 1990). A proper decomposition of
trend and cycles may find an appropriate scheme to weigh the short-term and long-run impacts of economic
movements in economic dynamics.

From the view of complex systems, the linear approach is not capable of describing complex patterns of
business cycles (Day and Chen 1993). We need a better alternative to detrending. Statistically, a unit-root
model can be better described by a nonlinear trend (Bierens 1995). The question is, What kind of trend is
proper for catching the pertinent features of the underlying mechanism? We can only solve the issue by
comparing empirical information revealed from competing approaches.

The essence of trend-cycle decomposition is finding an appropriate time window, or equivalently, a proper
frequency window, for observing time-dependent movements. From the view of signal processing, log-linear
detrending is a low-pass filter or wave detector, while first differencing is a high-pass filter or noise amplifier.
Obviously, the FD filter is not helpful for detecting low-frequency cycles.

Early evidence of economic chaos is found in TS detrended data (Barnett and Chen 1988; Chen 1988). The
main drawback of LLD detrending is its over-dependence on historical boundaries, while the DS series is too
erratic from amplifying high-frequency noise (Friedman 1969). The HP filter has two advantages. First, it is a
localized approach in detrending, without the problem of boundary dependence. Second, its frequency
response is in the range of business cycles (King and Rebelo 1993). Some economists argue that the HP filter
may transform a unit-root process into false cycles. A similar argument is also valid for the unit-root school,
because the FD filter obscures complex cycles by amplifying random noise. No numerical experiment can
solve a philosophical issue. In the history of science, the choice of a proper reference is only solved as an
empirical issue, i.e., whether or not we can discover some patterns and regularities that are relevant to
economic reality. We will see that introducing a time-frequency representation and the HP filter does reveal
some historical features of business cycles that are not observable through the FD filter.

In this report, we will demonstrate tests of two monthly time series from the stock market indicators:
FSPCOM is the Standard & Poor 500 stock price composite monthly index, and FSDXP, the S&P common
stock composite dividend yield. The source of this data is the Citibase. The data covers a period from 1947 to
1992. To save space, we only give the plots from the FSPCOM data. More tests in macroeconomic aggregates
are reported elsewhere (Chen 1994, 1995, 1996).
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Table 1
Detrending Statistics for FSPCOMln Monthly

Detrending Mean STD Variance T0 (month) Pdc (year)

FD 0.012 0.1123 0.0126 1.94 0.7
HP 0.008 0.2686 0.0722 8.93 3.0
LLD 0.427 0.3265 0.1066 86.6 28.5

Here, T0 is the decorrelation length measured by the time lag of the first zero in
autocorrelations; Pdc , the decorrelation period for implicit cycles.

The role of detrending in shaping characteristic statistics can be seen in Table 1. For most economic time
series, the magnitude of variance (a key parameter in asset-pricing theory) and the length in autocorrelations
(a key parameter in statistical tests) are closely associated with the characteristic time window of the
underlying detrending method. The variance observed by HP detrending is about 5.7 times of that of FD,
while the HP decorrelation length is 4.6 times that of FD. Their ratio in variance is roughly on the same order
as the ratio in the decorrelation length.

Here, T0 is the decorrelation length measured by the time lag of the first zero in autocorrelations, and Pdc is
the decorrelation period for implicit harmonic cycles: Pdc = 4∗T0.

A typical example of an economic time series is shown in the logarithmic FSPCOM (see Figure 1). The
contrast between the erratic feature of the DS series and the wavelike feature of TS and HP cycles is striking.
For example, their lengths of autocorrelations are greatly varied. The autocorrelation length is the largest for
LLD cycles, shortest for the FD series, and in between for HP cycles.

4 Instantaneous Autocorrelations and Instantaneous Frequency in Time-Frequency Representation

In spectral representation, a plane wave has an infinite time span but a zero-width in frequency domain. In a
correlation representation, a pulse has a zero-width time span but a full window in frequency space. To
overcome their shortcomings, the wavelet representation with a finite span both in time and frequency (or
scale) can be constructed for an evolutionary time series. The simplest time-frequency distribution is the
short-time Fourier transform (STFT) by imposing a shifting finite time window into the conventional Fourier
spectrum.

The concepts of instantaneous autocorrelation and instantaneous frequency are important in developing
generalized spectral analysis. A symmetric window in a localized time interval is introduced in the
instantaneous autocorrelation function of the bilinear Wigner distribution (WD); the corresponding
time-dependent frequency (or simply time frequency) can be defined by the Fourier spectrum of its
autocorrelations (Wigner 1932):

W D(t, ω) =
∫

S
(
t + τ

2

)
S∗
(

t − τ
2

)
exp{−iωτ } dτ (4)

Continuous time-frequency representations can be approximated by a discretized two-dimensional
time-frequency lattice. An important development in time-frequency analysis is the linear Gabor
transformation, which maps the time series into the discretized two-dimensional time-frequency space (Gabor
1946). According to the uncertainty principle in quantum mechanics and information theory, the minimum
uncertainty only occurs for the Gaussian function,

δtδf ≥
(

1

4π

)
(5)

where δt measures the time uncertainty, and δf the frequency uncertainty (angular frequency: ω = 2π f ).
Therefore, Gabor introduced the Gaussian window in the nonorthogonal base function h(t):

S(t) =
∑
m,n

Cm,nhm,n(t) (6)

hm,n(t) = a∗ exp

[
− (t −m1t)2

(2L)2

]∗
exp(−int1ω) (7)
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Figure 1
Fluctuation patterns from competing trend-cycle decompositions, including FD, HP, and LLD detrending, for the logarithmic
FSPCOM monthly series (1947–92). N = 552. (a) HP trend and LLD (log-linear) trend for X (t) {= log S(t)}. LLDc cycles are
residuals from log-linear trend. (b) Cycles from competing detrendings. (c) Autocorrelations of detrended series. The length of
correlations varies for competing detrendings.
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where 1t is the sample time interval, 1ω the frequency sample interval, L the normalized Gaussian window
size, and m and n are the time and frequency coordinates, respectively, in discretized time-frequency space
(Qian and Chen 1994a). The discrete-time realization of the continuous-time Wigner distribution can be
carried out by the orthogonal-like Gabor expansion in discrete time and frequency (Qian and Chen 1994b,
1996).1 The time-frequency distribution series can be constructed as the decomposed Wigner distribution

T FDSD(t, ω) =
D∑
0

Pd (t, ω) (8)

where Pd (t, ω) is the d-th order of decomposed Wigner distribution, and d is measured by the maximum
distance between interacting pairs of base functions. The zero-th order of a time-frequency distribution series
without interferences leads to a STFT. The infinite order converges to the Wigner distribution including higher
interference terms. For an applied analysis, 2nd or 3rd order is a good compromise in characterizing frequency
representation without severe cross-term interference. In our studies, we take the highest order D = 3.

For comparison between the deterministic model and the stochastic model, we also demonstrate the
time-frequency pattern of an AR(2) model of the FD series.

X (t) = 0.006[0.002]+ 0.265[0.043]X (t − 1)− 0.081[0.043]X (t − 2)+ µ(t) (9)

Here, standard deviations are in parenthesis. The residual µ(t) is white noise; its standard deviation is:
σ = 0.033.

The deterministic cycle is characterized by a narrow horizontal frequency band in time-frequency space,
while noise signals featured by droplike images are evenly scattered in whole time-frequency space. We can
see that FD series are very noisy, while HP cycles have a clear trace of persistent cycles in the range of
business-cycle frequency. Later we will show that a stationary stochastic model, such as an AR(2) model of an
FD series, has a typical feature of color noise without a continuous frequency line in time-frequency
representation. A noise-driven model such as an AR or GARCH series can produce pseudocycles in the
Fourier spectrum, but cannot produce persistent cycles in time-frequency representation. The time-frequency
representations of the logarithmic FSPCOM HP cycles and the FD series are shown in Figure 2.

For the deterministic mechanism, signal energy or variance is highly localized in time-frequency space. For
example, the signal of FSPCOM HP cycles are concentrated in the lowest quarter of the frequency band. Its
characteristic period (Pc) is 3.9 years. Of its variance, 89 percent is concentrated within a bandwidth of a 12
percent frequency window, and 73 percent is within a 5 percent frequency window.

5 Time-Variant Filters in the Gabor Space

The task of removing background noise is quite different in the trajectory representation and in
time-frequency representation. It is very difficult to judge a good regression simply based on a residual test in
econometrics. It is much easier to examine the linear Gabor distribution in the time-frequency space. We want
to find a simple way to extract the main area with a high energy concentration, which can be reconstructed
into a time series resembling main features of the original data. We will see if the filtered time series can be
described by a simple deterministic oscillator.

For a stationary stochastic process, a linear filter can be applied. For an evolutionary process containing
both deterministic and stochastic components, a time-variant nonlinear filter does a better job. The simplest
time-variant filter is a mask function that marks the boundaries of the energy concentration area.

It is much easier to construct a time-variant filter based on the Gabor transform than on the Wigner
transform, since the Gabor transformation is linear. The original time series Xo(t) can be represented by a M ∗N
matrix in Gabor space. Its element C (m,n) has M points in the time frame and N points in the frequency
frame. There is no absolute dividing line between cycles and noise in Gabor representation. We can define the
thresholds of a peak distribution in frequency space at each time section m. Correspondingly, the constructed
mask operator 8 provides a simple time-varying filter that sets all outside Gabor coefficients to zero. To

1The numerical algorithm is called the time-frequency distribution series (TFDS). The computer software is marketed by National Instruments
under the commercial name of Gabor spectrogram as a tool kit in the Lab View System.

Ping Chen 93



Figure 2
Time-frequency representation of empirical and simulated series from FSPCOMln detrended data. The X axis is the time t
(or number of points); the Y axis is frequency f , the Z axis is the intensity of TFDS distribution. (a) FSPCOMln HP cycles.
(b) FSPCOMln FD series. (c) AR(2) model of FSPCOMln FD series. N = 512.
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Table 2
Decomposition of FSPCOMln Data for Varying H

H η ν (%) CCgo

0.0 0.8435 71.2 0.8595
0.5 0.8281 68.6 0.8471
1.0 0.8256 68.2 0.8461

ensure the reconstruction is as close as possible to the ideal signal within the masked region in Gabor space,
an iteration procedure is employed. After the k-th iteration, we obtain the reconstructed time series Xg(t):

Xg(t) = {0−180}kX (t) = 2kX (t) (10)

where 0 and 0−1 denote a forward and inverse Gabor transform in discrete time-frequency lattice space,
respectively. This process will converge as long as the maximum eigenvalue of the matrix {0−180} is less
than one (Qian and Chen 1996; Sun et al. 1996). Our numerical calculation indicates that 2 converges in less
than five iterations. The construction of the mask function in the Gabor space is determined by the peak time
section of the Gabor distribution (see Figure 3).

To define the thresholds of a time-variant filter, the cutoff threshold Cth at each time section is introduced
in the following way:

Cth = Cmean + H ∗Cstd (11)

Here, H is the only adjustable parameter in setting the mask function. Cmean is the mean value of
|C (m,n)|,Cstd, the standard deviation of |C (m,n)|. All calculations are conducted at the peak time section
where |C (m,n)| reaches the maximum value.

From Table 2, we can see that the decomposition of variance is not sensitive to the choice of H , because
the signal energy is highly concentrated in the low-frequency band and the energy surface is very steep in the
Gabor space. The variance of the filtered signal accounts for about 70 percent of total variance. We chose
H = 0.5 in later tests.

The filtered HP cycles have the clean features of a deterministic pattern, while the filtered autoregressive
AR(2) series still has a random image (see Figure 4). Later we will see that the filtered HP cycles with
persistent frequencies can be described by color chaos with a low dimensionality.

Several statistics are calculated between the filtered and the original time series: η is the ratio of their
standard deviations; ν is the percentage ratio of variance; and CCgo is their correlation coefficient.

The shape of the mask function is determined by the intensity of Gabor components. We should point out
that a conventional test, such as the Durbin-Watson residual test, may not be applicable here, since residuals
may be color noise. Our primary goal is to catch the main deterministic pattern in the time-frequency space,
not a parametric test based on regression analysis.

The reconstructed H PCg time series reveals the degree of deterministic approximation of business
fluctuations: The correlation coefficient between the filtered and original series is 0.85. Their ratio of standard
deviations, η, is 85.8% for FSPCOM. In other words, about 73.7% of variance can be explained by a
deterministic cycle with a well-defined characteristic frequency, even though its amplitude is irregular. This is
a typical feature of chaotic oscillation in continuous-time nonlinear dynamical models.

We can see that the phase portrait of filtered FSPCOMln HP cycles has a clear pattern of chaotic attractors,
while the filtered AR(2) model fitting FSPCOMln FD series still keeps its random image (Figure 5).

From Figure 5, we also confirm our previous discussion in Section 2 that FD detrending simply amplifies
high-frequency noise, while HP detrending plus the time-variant filter in the Gabor space pick up
deterministic signals of color chaos from noisy data.

6 Characteristic Frequency and Color Chaos

Time-frequency representation contains rich information of underlying dynamics. At each section of time t ,
the location of the peak frequency f (t) can be easily identified from the peak of energy distribution in the
frequency domain. If the time path of f (t) forms a continuous trajectory, we can define a characteristic
frequency fc from the time series. Correspondingly, we have a characteristic period Pc(= 1/ f c). Stochastic
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Figure 3
Construction and application of the time-variant filter in Gabor space. Unfiltered and filtered Gabor distribution for FSPCOMln
HP cycles are demonstrated. (a) Peak time section of Gabor distribution |C (m,n)| in the frequency domain for FSPCOMln.
Different Cth values are indicated by different H . The X axis is the discrete number in frequency. (b) Mask function M (n,m)
for FSPCOM. The tested time series is studied under the one-fourth frequency window. For reducing the boundary distortion,
the reflective boundaries at both sides of the data are added. The window size is the same as the Gaussian window of length
L in Eqn. (3.2). So, the total length of data for Gabor transform is: N ′ = N /4+ L∗2. Here, N = 552, L = 64, the time sampling
rate 1µ = 8, and C (n,m) is a matrix of 17∗42. H = 0.5. (c) The Gabor distribution for the unfiltered (upper part) and filtered
(lower part) data.
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Figure 4
The original and reconstructed time series of FSPCOMln HP cycles. (a) The original and reconstructed time series of FSPCOMln
HP cycles. η = 82.8%; CCgo = 0.847. (b) Autocorrelations of the original and reconstructed series. The time lag T0 of the first
zero in autocorrelations gives a rough measure of the cycle. The decorrelation period: Pdc = 4∗T0 = 3.3 years (H = 0.5).

Table 3
Characteristic Statistics for Stock Market Indicators

Data η ν (%) CCgo Pc φ (%) Pdc λ−1 µ

FSPCOM 0.828 68.6 0.847 3.6 25.9 3.3 5.0 2.5
FSDXP 0.804 64.6 0.829 3.5 27.7 2.9 6.9 2.4

time series such as the autoregressive (AR) process cannot form a continuous line in time-frequency
representation.

The empirical evidence for color chaos is further supported by consistent results from complementary
nonlinear tests of filtered HP cycles (Table 3).

Here, η is the ratio of standard deviations of the reconstructed series Sg(t) over the original HP cycles
So(t); ν is their percentage ratio of variance; CCgo is their correlation coefficient (also in Table 2); Pc is the
mean characteristic period from time-frequency analysis; Pdc is the decorrelation period from correlation
analysis; φ is the frequency variability (in time), measured by the percentage ratio of the standard deviation of
fc to the mean value of fc over time evolution; λ is the Liapunov exponent; its reverse ( λ−1 ) is also a
measure of a time scale, which is in the same range of Pdc for deterministic cycles; and µ is the correlation
dimension for attractors. All the time units here are in years.

Characteristic frequencies of deterministic cycles are found in HP detrended cycles. Their frequency
variability, measured by the ratio of standard deviation to mean frequency, is about 25 percent over a history

Ping Chen 97



Figure 5
Patterns of phase portraits for FSPCOMln series. (a) FSPCOMln HPc unfiltered series. T = 60. Some pattern is emerging behind
a noisy background. (b) FSPCOMln HPc filtered series. T = 60. Clear pattern of strange attractor can be observed.

of 45 years. The frequency stability of business cycles in the stock market is quite remarkable. The bandwidth
of the characteristic frequency fc for HP cycles is just a few percent of the frequency span of white noise. This
is strong evidence for economic color chaos, even in a noisy and changing environment.

From Table 3, we can see that FSPCOM and FSDXP are quite similar in frequency pattern and
dimensionality. The characteristic period Pc from the time-frequency analysis and the decorrelation period Pdc

from the correlation analysis are remarkably close. It is known that a long correlation is an indicator of
deterministic cycles (Chen 1988, 1993). However, time-frequency analysis provides a better picture of
persistent cycles in business movements than correlation analysis and nonlinear analysis based on
time-invariant representations.

The frequency patterns of the stock-market indexes disclose a rich history of market movements (see
Figure 6).

The extraordinary resilience of the stock market can be revealed from the stable frequency pattern under
the oil-price shocks in 1973 and 1979, and the stock-market crash in October 1987. These events generated
only minor changes in the characteristic period Pc for FSPCOM and FSDXP indexes.

Economic historians may use the Pc path as a useful tool in economic diagnosis. After a close examination
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Figure 5 Continued
(c) FSPCOMln FD series. T = 40. The cloud-like pattern indicates the dominance of high frequency noise. (d) Filtered AR(2)
series. T = 5. No deterministic structure can be identified.

of Figure 6, we found that the frequency shifts of S&P indexes occurred after the oil-price shock in 1973, but
happened before the stock-market crash in 1987. If we believe that the cause of an event always comes
before the effect, then our diagnosis of these two crises would be different. The oil-price shocks were
external forces to the stock market, while the stock-market crash resulted from an internal instability.

Our findings of nonlinear trends and persistent cycles reveal a rich structure from stock-market movements.
For example, the equity premium puzzle will have a different perspective, because the frequency pattern of
consumption and investment are not similar to that of stock-market indicators (Mehra and Prescott 1985; Chen
1996). We will discuss this issue elsewhere.

7 Risk, Uncertainty, and Information Ambiguity

Franck Knight made a clear distinction between risk and uncertainty in the market (Knight 1921). Keynes also
emphasized the unpredictable nature of “animal spirits” (Keynes 1921, 1936). From the view of nonequilibrium
thermodynamics, uncertainty is caused mainly by time evolution in open systems (Prigogine 1980).

The random-walk model of asset pricing has two extreme features. On one hand, the future-price path is
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Figure 6
Time paths of instantaneous frequencies. Persistent cycles of FSPCOMln and FSDXP HP cycles have stable characteristic
frequency over time. Filtered stochastic series has no trace of persistent cycles. (a) Frequency stability under historical shocks.
The time path of characteristic period Pc for FSPCOM and FSDXP HP cycles. N = 552. (b) Filtered AR(2) series. N = 512.
H = 0.5.

completely unpredictable. On the other hand, the average statistics are completely certain because the
probability distribution is known and unchanged. According to equilibrium theory, only measurable risk with
known probability exists in the stock market; no uncertainty with unknown and changing probability is
considered in asset-pricing models. The static picture of CAPM ignores the issue of uncertainty raised by
Knight and Keynes.

Both practitioners and theoreticians are aware of the impact of business cycles. Fischer Black, the originator
of the geometric random-walk model in option-pricing theory, made the following observations (emphasis is
added by the author) (Black 1990):

“One of the [Black-Scholes] formula’s simple assumptions is that the stock’s future volatility is known
and constant. Even when jumps are unlikely this assumption is too simple. Perhaps the most striking
thing I found was that volatilities go up as stock prices fall and go down as stock prices rise. Sometimes
a 10% fall in price means more than a 10% rise in volatility. . . . After a fall in the stock price, I will
increase my estimated volatility even where there is no increase in historical volatility.”

From Black’s observation, the implied volatility, the only unknown parameter in option-pricing theory,
does not behave as a slow-changing variable, which is a necessary condition for meaningful statistic concepts
of mean and variance, but instead acts like a fast-changing variable, such as trend shifting and phase
switching in business cycles (see also Fleming, Ostdiek, and Whaley 1994). Clearly, the up-trend or
down-trend of price levels strongly influences the market behavior, even when historic variance may not
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change significantly. Black’s observation of changing implied volatility helps our studies of nonlinear trends
and business cycles in the stock market. We will discuss this topic in the near future.

In the equilibrium theory of the capital asset pricing model (CAPM), risk is represented by the variance of a
known distribution of white noise. From our analysis, the risk caused by high-frequency noise only accounts
for about 30 percent of variance from FSPCOM and FSDXP HP cycles.

According to our analysis, there is an additional risk generated by a chaotic stock market. About 70 percent
of variance from HP detrended cycles is associated with color chaos, whose characteristic frequency is
relatively stable. For the last 45 years, the variability of the characteristic period for FSPCOM and FSDXP is less
than 30 percent. From this regard, the discovery of color chaos in the stock market indicates a limited
predictability of turning points. We can develop a new program of period-trading rather than a level-trading
strategy in investment decisions and risk management. The frequency variability implies a forecasting error in
a range of a fraction of the observed characteristic period. Clearly, the knowledge of HP cycles gives little
help to short-term speculators. Further study of higher-frequency data is needed for investors.

Recent literature of nonstationary time-series analysis such as ARCH and GARCH models focuses on the
issue of a changing mean and variance in the random-walk model with a drift. We found two more sources of
uncertainty: changing frequency and shifting trend in an evolving economy. These uncertainties severely
restrict our predictability of future price trends and the future frequency of business cycles. Therefore, we
have a new understanding of the difficulties in economic forecasting.

In the two-dimensional landscape of time-frequency representation, there is no absolute dividing line
between stochastic noise and deterministic cycles. The concept of perfect information and incomplete
information can only be applied when the risk can be measured by a known distribution, such as a normal
distribution in CAPM or a log-normal distribution in option-pricing theory. The question of information
ambiguity arises in signal processing when information is a mixture of deterministic and stochastic signals.
Under the Wigner distribution, excess information with an infinite order of D coupling produces misleading
interferences and false images. The real challenge in pattern recognition is searching for relevant information
from conflicting news and experiences. For example, the merger and acquisition in the capital market is a war
game in the business world, filled with conflicting and false information. That is why the stock market often
overreacts to market news on mergers and acquisitions.

From our analysis of historical events, the time path of stock prices is not a pure random walk. Price history
is a rich source of new information if we have the right tools of signal decoding. In balance, our approach of
trend-cycle decomposition and time-frequency analysis increases a limited predictability of chaotic business
cycles, and at the same time reveals two more uncertainties in nonlinear trends and evolving frequency.

The equilibrium school in finance theory emphasizes the forecasting difficulty caused by noisy
environments, but ignores the uncertainty problem in evolving economies.

8 Persistent Cycles and the Friedman Paradox

A strong argument against the relevance of economic chaos comes from the belief that economic equilibrium
is characterized by damped oscillations and absence of deterministic patterns. Friedman asserted that market
competition will eliminate the destabilizing speculator, and speculators will lose money (Friedman 1953).
Friedman did not realize that arbitrage against a market sentiment is very risky if rational arbitrageurs have
only limited resources (Shleifer and Summers 1990). Friedman also assumed that winner-followers could
perfectly duplicate a winner’s strategy. This could not be done for chaotic dynamics in an evolving economy.

People may ask, What will happen once the market knows about the limited predictability of color chaos in
the stock market? At this stage, we can only speculate about the outcome under complex dynamics and market
uncertainty. We believe that the profit opportunities associated with color chaos are limited and temporary,
but the nonlinear pattern of persistent cycles will remain in existence and perhaps evolve over time.

Based on our previous discussion, we will point out two likely outcomes: coexistence of diversified
strategies, and persistence of chaotic cycles. There is no way to have a sure winner, because of trend
uncertainty and information ambiguity. Nonlinear overshooting and time delay in feedback may actually
create the chaotic cycles in the market dynamics (Chen 1988, 1993; Wen 1993).

There are several factors that may prevent wiping out the persistent pattern of color chaos. First, people are
incapable of distinguishing fundamental movements and sentimental movements in price changes, especially
when facing a growing trend. The same argument on a monetary veil of real income caused by inflation can
be applied to a price veil of stock value caused by a changing market sentiment along with an evolving
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economic growth. Second, information ambiguity is caused by a limited time horizon in observation of
complex systems. Bounded rationality is rooted not only in limited computational capacity, but also in
dynamic complexity (Prigogine 1993).

Winner-following or trend-chasing behavior may change the amplitude or frequency of a color chaos, but
the chaotic pattern will persist in a nonlinear and nonequilibrium world.

9 Conclusions

There is no question that external noise and measurement errors always exist in economic data. The questions
are whether some deterministic pattern and dynamical regularities are observable from the economic
indicators, and whether economic chaos is relevant in economic theory (Granger and Teräsvirta 1993). Our
answer is yes, if the color-chaos model is addressing the empirical pattern of business cycles.

From our empirical analysis, stock market movements are not pure random walks. A large part of
stock-price variance can be explained by a color-chaos model of business cycles. Its characteristic frequency
is in the range of business cycles. The frequency stability of the stock market is remarkable under historical
shocks. The existence of persistent chaotic cycles reveals a new perspective of market resilience and new
sources of economic uncertainties. To observe chaotic patterns of business cycles, a proper choice of
trend-cycle decomposition and a time window are the keys in economic signal processing. We need a
modified theory of asset pricing in a chaotic stock market.

A new way of thinking needs new representation. From business practice, it is known that the time window
plays a critical role in evaluating key statistics, such as mean, variance, and correlations in asset pricing. Under
a coherent wave representation, such as the case in quantum mechanics and information theory, the
frequency window is closely related to the time window according to the uncertainty principle (Gabor 1946).
That is why the joint time-frequency representation is essential for time-dependent signal processing.

Like a telescope in astronomy or a microscope in biology, time-frequency analysis opens a new window
for observing evolving economies. As a building block of nonlinear economic dynamics, the color-chaos
model of stock-market movements may establish a potential link between business-cycle theory and
asset-pricing theory.
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