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How Big Is the Random Walk in GNP?

John H. Cochrane
Unaversity of Chicago

This paper presents a measure of the persistence of fluctuations in
GNP based on the variance of its long differences. That measure
finds little long-term persistence in GNP. Previous research on this
question found a great deal of persistence in GNP, suggesting mod-
els such as a random walk. A reconciliation of this paper’s results
with previous research shows that conventional criteria for time-
series model building can produce misleading estimates of per-
sistence.

I. Introduction

Macroeconomists once viewed fluctuations in gross national product
as temporary deviations from a trend. The economic theory of busi-
ness cycles described temporary deviations from “potential GNP,”
which was assumed to evolve smoothly over time, and data were
routinely detrended prior to analysis. A body of recent empirical
work (described below) has questioned this time-honored view. By
using a variety of time-series models, it finds that fluctuations in GNP
are permanent—that a decline in GNP today lowers forecasts of GNP
into the infinite future.

This paper reexamines the long-run properties of GNP and argues
that GNP does, in fact, revert toward a “trend” following a shock.
However, that reversion occurs over a time horizon characteristic of
business cycles—several years at least. Therefore, the short-run prop-
erties of GNP are consistent with a model with very persistent shocks,
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and one can incorrectly infer a great deal of long-horizon persistence
by fitting a time-series model to this short-run behavior.

The class of time-series model most commonly used to describe
temporary deviations about trend is

ye=bt+ ) ae (1)
;=0

where y, stands for log GNP, bt describes the trend, and €, is a random
disturbance.' Fluctuations in y, are temporary if 3a;e,_; is a stationary
stochastic process (y, is then called “trend stationary”). For Zaje,_; to
be stationary, the a; must approach zero for large j. As a result, a
decline in GNP below trend today has no effect on forecasts of the
level of GNP, E(y,+,), in the far future, and it implies that growth
rates of GNP must rise above their historical average for a few periods
until the trend line is reestablished.

The simplest time-series model that captures permanent fluctua-
tions in GNP is a random walk with drift:

Ye =R+ Y1 t+ € (2)
Fluctuations in a random walk are permanent in the following sense:
suppose that €, = —1, so that y, falls one unit below last period’s
expected value. Then, since y,4; = y, + ju + €41 + ... + €4,

forecasts E,(y, +,) fall by one unit for the indefinite future. Also, a low
or negative growth rate today implies nothing about growth rates in
the future, and there is no tendency for future levels of GNP to revert
to a trend line. The random walk is also nonstationary.

The distinction between a random walk (2) and a trend-stationary
series (1) is extreme. Long-range forecasts of a random walk move
one for one with shocks at each date, while long-range forecasts of a
trend-stationary series do not change at all. There are two related
ways to think about a series that lies between these two extremes.

First, one can ask how much long-term forecasts respond to shocks.
In one interpretation, the measure of this paper asks the question,
How much does a one-unit shock to GNP affect forecasts in the far
future? If by one unit, it finds a random walk; if by zero, it finds a
trend-stationary process like (1). It can also find numbers between
zero and one, characterizing a series that returns toward a “trend” in
the far future, but does not get all the way there, or it can find a
number greater than one, characterizing a series that will continue to

! Simple univariate time-series models like (1) should be thought of as a way of
capturing the dynamic behavior of y, that results from a rich multivariate world. They
are not “structural” in any way.
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diverge from its previously forecast value following a shock. Campbell
and Mankiw (1987) originated and empbhasize this interpretation.

Second, one can model a series whose fluctuations are partly tem-
porary and partly permanent as a combination of a stationary series
and a random walk. The random walk carries the permanent part of a
change and the stationary series carries the temporary part of a
change. Then, one can ask how important the permanent or random
walk component is to the behavior of the series. In a second interpre-
tation, the measure of this paper asks the question, How large is the
variance of shocks to the random walk or permanent component of
GNP compared with the variance of yearly GNP growth rates? Or,
equivalently, How big is the random walk in GNP?

If the variance of the shocks to the random walk component is zero,
the series is trend-stationary, and long-term forecasts do not change
in response to shocks. If the variance of the shocks to the random
walk component is equal to the variance of first differences, the series
is a pure random walk. As before, there is a continuous range of
possibilities between zero and one and beyond one.

A model consisting of a random walk plus a stationary component
may seem quite special. However, I show below that we can think of
any series whose growth rates or first differences are stationary (any
series with a unit root) as a combination of a stationary series plus a
random walk. The decomposition into stationary and random walk
components is a convenient way of thinking about the properties of a
time series, but it adds no structure. I also show that the response to
innovations is proportional to the square root of the variance of
shocks to a random walk component, so we can freely transform
between these two interpretations.

The idea that GNP may contain a random walk goes back to Irving
Fisher’s “Monte Carlo hypothesis,” examined by McCulloch (1975).
There is now a large literature following the first half of Nelson and
Plosser (1982) that applies the Dickey and Fuller (1979, 1981) and
subsequent tests for unit roots to aggregate time series. Since a series
with a unit root is equivalent to a series that is composed of a random
walk and a stationary component, tests for a unit root are attempts to
distinguish between series that have no random walk component (or
for which the variance of shocks to the random walk component is
zero) and series that have a random walk component (or for which the
variance of shocks to the random walk component is between zero
and infinity). Stated this way, it is clear why tests for a unit root have
low power: it is hard to tell a stationary series from a stationary series
plus a very small random walk. This paper and the related literature
cited in it go beyond testing for the presence or absence of a unit root
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or random walk component and measure how important the unit root
or random walk component is to the behavior of a series.

Inuplications of the Random Walk in GNP

The size of a random walk in GNP is important from a purely statisti-
cal viewpoint. Many statistical procedures rely critically on the distinc-
tion between series that do not contain a random walk component (1),
which we can and should detrend, and first-difference stationary
series—(3) below, or series that do contain a random walk compo-
nent—which we should first-difference prior to analysis. Hypothesis
tests that rely on asymptotic distribution theory are an important
example because that distribution theory is often quite sensitive to the
presence of a random walk component. A measurement of the size of
the random walk component can be a better guide to the proper
procedure than a unit root test because if the random walk compo-
nent is small but still nonzero, then an asymptotic distribution theory
based on trend stationarity may provide a better approximation in a
given small sample than the theory based on a unit root.

The size of a random walk in GNP has been cast as a direct test
between competing models of the economy. For example, Nelson and
Plosser (1982) interpreted their result that GNP has a large random
walk component as evidence for stochastic equilibrium models over
traditional monetary or Keynesian business cycle models. They ar-
gued that traditional models produce only temporary deviations from
trend, while models that find the ultimate source of GNP variability in
technology shocks can produce permanent fluctuations. '

With the advantages of hindsight, it now seems that the size or
existence of a random walk component in GNP cannot directly distin-
guish broad classes of economic theories of the business cycle at their
present stage of development. The Kydland and Prescott (1982) and
Long and Plosser (1983) stochastic equilibrium models were con-
structed precisely to generate temporary fluctuations about trend. On
the other hand, King et al. (1987) show that one can modify these
models to produce a random walk component by introducing a ran-
dom walk in the technology shocks or a linear technology for human
or physical capital accumulation. Presumably, the same modifica-
tions would introduce a random walk component into monetary or
“Keynesian” models as well.

Furthermore, the results of this paper are compatible with a variety
of random walk components. I show below that an AR(2) about a
deterministic trend, which has no random walk component, and a
model with a random walk whose variance is 0.18 times the variance
of first differences of log GNP account equally well for the results of
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this paper. Also, the standard errors in this paper are large, and I
argue that this is unavoidable. I conclude that the existence or size of
a random walk component in GNP is not a precisely measured “styl-
ized fact” that we should require any reasonable model to reproduce.

The most promising direct use for the point estimates of the size of
a random walk component in this paper may be the calibration of a
given model rather than a test that can distinguish competing classes
of models. If a model (like the ones cited above) produces a random
walk in GNP, the results of this paper suggest that the parameters of
that model should be picked to also generate interesting short-run
dynamics of GNP, so that the variance of yearly changes in GNP is
much larger than the variance of shocks to its random walk compo-
nent.

Other Estimates

Several authors have estimated the persistence of fluctuations in
GNP, and their estimates vary greatly. Nelson and Plosser (1982)
matched a model consisting of permanent and temporary compo-
nents to a stylized autocorrelation function for growth rates of GNP
and concluded that the permanent component was more important
than the temporary component. Watson (1986) and Clark (1987) esti-
mated different unobserved components models and found a small
permanent component. Campbell and Mankiw (1987) estimated the
effect of a shock on long-term forecasts of GNP from the parameters
of low-order autoregressive, moving average (ARMA) representa-
tions of postwar GNP and found a large random walk component.

Several authors have examined the persistence of fluctuations in
other time series using a variety of methods. Rose (1986) presents a
survey of papers that find large random walk components in various
macroeconomic time series. In finance, conventional wisdom favored
the random walk model while macroeconomists favored the trend-
stationary model. Poterba and Summers (1987), Fama and French
(1988), and Lo and MacKinlay (1988) use variance ratio estimators
similar to the one used in this paper and related estimators to docu-
ment a temporary component in stock prices. Huizinga (1987) uses a
closely related estimator to document a temporary component in real
exchange rates. Cochrane and Sbordone (1988) present a multivar-
iate extension.

This Paper’s Technique

In this paper, I measure the size of a random walk component in GNP
from the variance of its long differences. The intuition behind this
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measure comes from the following argument: Imagine that log GNP,
denoted y,, is a pure random walk (model [2]). Then the variance of its
k-differences grows linearly with the difference : var(y, — y—x) =
ka2 On the other hand, if log GNP is stationary about a trend (model
[1]), the variance of its k-differences approaches a constant, twice the
unconditional variance of the series: var(y, — y,_;) — 205. Now plot
(1/k)var(y, — y,—;) as a function of k. If y, is a random walk, the plot
should be constant at of. If y, is trend-stationary, the plot should
decline toward zero.

Next, suppose that fluctuations in GNP are partly permanent and
partly temporary, which we can model as a combination of a station-
ary series and a random walk. Now the plot of (1/kyvar(y, — y,-4)
versus k should settle down to the variance of the shock to the random
walk component.

If fluctuations in GNP are partly temporary—if the random walk
component is small and a shock today will be partially reversed in the
long run—that reversal is likely to be slow, loosely structured, and not
easily captured in a simple parametric model. The variance of k-
differences can find such loosely structured reversion, whereas many
other approaches cannot. I show in Section IV that this difference can
reconcile the results of this paper with other measures of the perma-
nence of fluctuations in GNP.

Results

Figure 1 and table 1 present (1/k)var(y, — y,_,) for log real per capita
GNP, 1869-1986. Pre-1939 data are taken from Friedman and
Schwartz (1982). I use real per capita GNP to eliminate possible non-
stationarity induced by inflation or population growth. (Henceforth, I
will refer to log real per capita GNP as just “GNP.”) Figure 1 and table
1 also include asymptotic standard errors, discussed below. Table 1
also presents 1/k times the variance of k-differences divided by the
variance of first differences (the variance ratio). The units in table 1
and figure 1 are annual percentage growth.

Since 1/k times the variance of k-differences settles down to about
one-third of the variance of first differences, figure 1 and table 1
suggest that the innovation variance of the random walk component
is about one-third of the variance of year-to-year changes: annual
growth rates of GNP contain a large temporary component. In fact, I
show below that the pattern of figure 1 is consistent with a determin-
istic trend, which has no permanent or random walk component, and
whose fluctuations are entirely temporary.

Figure 2 presents the log of real per capita GNP. Notice that this
data set looks as if it has a trend in it. Fluctuations occur, but the level
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FiG. 1.—1/k times the variance of k-differences of log real per capita GNP, 1869—
1986, with asymptotic standard errors.

of the series always returns to the “trend line.” Furthermore, that
trend line is linear: there are no “waves” of low-frequency movement.
These characteristics drive the finding of a small random walk com-
ponent. (Note that low-frequency movement generated by a non-
linear trend, a shift, etc. would show up as a large random walk
component in this and most other estimation techniques based on
linear time-series models.)

Prewar GNP data are more variable than postwar data, and one
might suspect that this characteristic drives the result. However,
figure 3 and table 1 present 1/k times the variance of k-differences for
postwar GNP, and the same pattern is evident. Both the variance of
first differences and the variance of the random walk component are
lower, but their proportions do not change much.?

? The pattern of fig. 2 is sensitive to the precise specification of the variables. First,
the variance of quarterly differences of seasonally adjusted GNP is less than one-fourth
the variance of yearly differences, so the variance ratio is higher if one uses quarterly
rather than annual differences in the denominator. This observation explains most of
the difference between fig. 2 and the results reported by Campbell and Mankiw (1988),
who use a similar technique on quarterly data. Second, taking the variance of overlap-
ping k-year differences of quarterly data vs. the variance of k-year differences of annual
averages, including or excluding population growth, taking logs or not, and even
changing the sample by a few years can all change the variance ratio by about one
standard error.
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Romer (1986) argued that prewar GNP data overstate the actual
cyclical variability of GNP. This possibility will not bias the estimate of
the variance of the random walk component. Taking k-differences
acts as a filter that ignores cyclical fluctuations and concentrates on
the variability of longer “runs,” so a different GNP data set will have a
different variance of k-differences if the early GNP has a significantly
different and more variable trend line, not if its cyclical fluctuations
are different. A graph similar to figure 1, using Romer’s adjusted
early GNP series, produces a variance of a random walk component
very similar to that of figure 1. It should because Romer kept the
decade trends the same in her corrections for cyclical volatility. Her
criticism, or the seasonal adjustment of quarterly data, will affect the
variance of first differences, so the variance ratio can be biased by
excessive volatility or smoothness of the first differences.

The presence of a splice in 1947 also does not drive the result.
Every long series of GNP data contains at least one splice. The wide
surveys used to construct later data are simply not available for earlier
periods, so some projection using a restricted set of industries is un-
avoidable. However, forcing the levels of the “old” and “new” GNP
series to match at a certain date does not bias the variance of k-
differences. It is biased only if the old series has different growth
rates over long horizons.

The body of this paper consists of an investigation of 1/k times the
variance of k-differences as an estimate of the random walk compo-
nent in GNP. Section II provides several interpretations of a random
walk component. Section III discusses estimation. Section IV recon-
ciles these results with previous research that found a large random
walk component by showing how conventional time-series estimation
techniques can provide misleading estimates of a random walk com-
ponent. Section V contains a summary and concluding remarks.

II. Unit Roots and Random Walk Components

This section discusses and documents several claims in the Introduc-
tion about the representation of time series. It shows that first-
difference stationary time series or time series with a unit root are
equivalent to time series that are composed of a stationary and a
random walk component. It argues that the variance of shocks to a
random walk component is just a convenient interpretation of the
parameters of an arbitrary first-difference stationary series, but it
requires no additional structure. It shows how to transform between
the variance of a random walk component and the response of long-
term forecasts to a shock.
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Assume that log GNP follows a first-difference stationary linear
process; that is, growth rates of GNP are stationary. In this case, log
GNP has a moving average representation of the form

Ay =(1-Ly=p+Ale=pn+ ) ae 3)
7=0

which I take as the starting point; L is the lag operator, Ly, = y,_ . The
first equality defines the notation Ay, and (1 — L)y, for first differences
of y,. The last equality defines the lag polynomial notation A(L). The ¢,
are independent identically distributed (i.i.d.) error terms with com-
mon variance o>2.

The random walk process (2) obviously has a representation of the
form (3). The trend-stationary process (1) is a limiting case of (3): if p
= b and if the lag polynomial A(L) in (3) has a unit root—that is, we
can express A(L) = (1 — L)B(L)—we recover (1) by canceling the
terms (1 — L). Many unobserved components models are first-
difference stationary and hence have a representation (3). Nelson and
Plosser (1982) and Watson (1986) are examples. On the other hand,
(3) does not include nonlinear processes such as Quah (1986), a pro-
cess with a nonlinear trend, or second-difference stationary processes
(the growth rates of GNP follow a random walk) as in Clark (1987).

Given the representation (3), we have the following fact.

Fact 1. Any first-difference stationary processes can be repre-
sented as the sum of stationary and random walk components.

To show that a representation as stationary plus random walk com-
ponents exists, we simply construct it from the representation (3).
This decomposition comes from Beveridge and Nelson (1981). Let

yl = Zt + Cyy (4)

where

Zr=p tzq + (Z a,-)et,
j=0
(Z aj)e, + (Z aj)et,l + (Z a,)e,,Q + ...,

j=1 j=2 =3

—¢

This decomposition is constructed so that limy_. Eyevr = z, + kp;
that is, long-term forecasts of y, converge to z, plus k. In this sense,
z, is the permanent component of y,. Beveridge and Nelson call it a
stochastic trend. Long-term forecasts of y, are unaffected by ¢,, the
temporary component.

The innovation variance of the random walk component o3, is a
natural measure of the importance of the random walk component.
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From the definition (4) we can write the variance of the random walk
component 0%, in terms of the moving average representation (3):

0k. = (2¢)’0? = |A(1)[a? (5)

(sums without indices run from zero to infinity).

In the Beveridge and Nelson decomposition (4), the innovations in
the random walk and stationary components are identical. In a more
general combination of random walk and stationary components, the
innovations may be correlated:

Ve =2t ¢y
Zp =tz My (6)
¢, = B(L)d,, E(m,?d,) arbitrary.

If we start with a process (6), Ay, is stationary, and so the process has a
representation of the form (3). Most processes of the form (3) can be
decomposed into a variety of processes (6), with varying correlation
between the innovations; but only the decomposition (4) is guaranteed
to exist.?

Since a variety of decompositions into stationary and random walk
components of the form (6) exist for any given stationary process (3),
a measure based on the variance of the random walk component
would be in serious trouble if it depended crucially on which arbitrary
decomposition we choose. Fortunately, it does not, as seen in the
following fact.

Fact 2. In every decomposition of a process (1) into stationary and
random walk components (6), the innovation variance of the random
walk component is the same: o3, = (2a,)%c?.

To show fact 2, start with an arbitrary decomposition (6). The cor-
responding moving average representation of the form (3) is

(1 =Ly, =p+ v+ (1 —LBL)S=p + A(L)e,. (7)

The last equality defines the parameters A(L) of a moving average
representation from the parameters B(L) of (6). Now form the
Beveridge and Nelson decomposition of both sides of the last equality
in (7). Since the processes on both sides of the last equality are the
same, they must have the same variance of a random walk compo-
nent, so we must have* |[A(1)|2¢? = o2. The correlation between v, and

® Watson (1986) derives this fact. For example, if we seek a representation with
uncorrelated innovations, the spectral density of the combination can be no less than
the spectral density of each component; thus such a representation exists only if the
spectral density of the first differences has a global minimum at zero.

* This statement can be more compactly derived by noting that for the processes on
each side of the last equality in (7) to be the same, their spectral densities must be the
same at all frequencies, and zero in particular.
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3, is irrelevant for this argument, so the innovation variance of every
decomposition (6) of the same moving average representation (3)
must have the same variance of shocks to the random walk compo-
nent. This argument demonstrates fact 2.

There is one more interpretation, which will be useful in the next
section. The spectral density® of Ay, is, by (1), Sa,(e ™) = |A(e*)|?02.
Therefore, we have the following fact.

Fact 3. The innovation variance of the random walk component is
equal to the spectral density of Ay, at frequency zero, that is,

0%, = (24)%02 = Say(e”)0? 8
or, dividing by the variance of first differences,
0, _ (38)° _ Saye™™)

2 2 2
UAy Ed" (rAy

(8")

Equations (8) and (8’) summarize three equivalent ways of looking
at the long-run properties of a series: we can break it into permanent
(random walk) and temporary (stationary) components, we can exam-
ine the response of long-term forecasts to an innovation, or we can
examine the spectral density at frequency zero of its first differences.
All three interpretations allow us to think of the permanence of the
fluctuations in a series as a continuous phenomenon rather than a
discrete choice. Furthermore, equations (8) and (8') show that the
quantity o3, or O'%Z/O'QA), defined from the Beveridge and Nelson de-
composition (3) is no more than a useful interpretation of the sum of
the moving average coefficients 2a;. The decomposition into station-
ary and random walk components adds no structure.

The variance of shocks to the random walk component or spectral
density at frequency zero of first differences also captures all the
effects of a unit root on the behavior of a series in a finite sample. As a
sample of T observations of a series is completely characterized by its
T — 1 autocovariances, it is also completely characterized by T — 1
periodogram ordinates. By changing the periodogram ordinate at
frequency zero of first differences without changing the others, we
can make a stationary series into a series with a unit root or random
walk component and vice versa.®

Since the size of a random walk component is a continuous choice,
any test for trend stationarity (g3, = 0 or SAy(e_iO) = 0) must have
arbitrarily low power against the alternative of a small enough ran-

® I use the notation S(e~*") for the spectral density at frequency w and, hence, S(¢)
for the spectral density at ® = 0.

® With an infinite sample, or in population, this proposition does not hold. The
spectral density is defined only almost everywhere; and in some cases we can bound the
variation of the population spectral density function with very weak assumptions.
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dom walk component o%.. As a result, efforts to categorize series as
trend-stationary or difference-stationary and read great things into
the difference between the two will not be very fruitful.

III. Estimation

I claimed in the Introduction that the variance of k-differences could
be used to estimate the innovation variance of a random walk com-
ponent. To document that claim and to provide standard errors,
this section discusses the statistical properties of the variance of &-
differences.

Asymptotic Properties

Let o3 denote 1/k times the population variance of k-differences of
Yes o =k7! var(y; — Ye—1); a? is related to the autocorrelation coeffi-
cients of Ay, by

k=1 .
k -
oi=(1+22 —Lo)ol, ©)
j=

where czy = var(y, — y.—1)and p; = cov(AytAy,_j)/ciy. The derivation
is straightforward but tedious, so it is presented in the Appendix.
Equation (9) shows that the limit of o} is indeed the innovation vari-
ance of the random walk component:

lim Uf=(l+2

kh—©

plod, = Sy = ok (10)
Jj=1
The second equality is the definition of spectral density, while the
third is reproduced from equation (8).

Equation (9) suggests that we could also estimate 1/k times the
variance of k-differences by using sample autocorrelations p; in the
place of their population values p;. (Huizinga [1987] and Campbell
and Mankiw [1988] perform the calculation this way.) The right-hand
side of (9) with p; in place of p; is the definition of the Bartlett es-
timator of the spectral density at frequency zero (Anderson 1971, p.
511). Hence, 1/k times the variance of k-differences is asymptotically
equivalent to the Bartlett estimator.”

7 1/k times the variance of k-differences and the conventional Bartlett estimate are
not identical in small samples. The estimates of sample autocorrelations implied by the
sample variance of k-differences underweight observations k dates away from the end-
points, compared with the usual estimates of autocorrelation. The difference disap-
pears asymptotically but may be important in small samples. Also, the conventional
Bartlett estimate is not unbiased in small samples, as the corrected 1/k times the vari-

ance of k-differences 67 is for a random walk. I thank John Huizinga for pointing this
out.
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The properties of the Bartlett estimator are well known, so we can
establish the asymptotic properties of 1/k times the variance of k-
differences by reference to those of the Bartlett estimator. In particu-
lar, (1) if K/T — 0 as T — =, where T is the sample size, 1/k times the
sample variance of k-differences is a consistent estimate of the spec-
tral density at frequency zero; (2) the asymptotic variance of o7 is
4kS%(¢~"°)/3T (Anderson 1971, p- 531).

The equivalence between 1/k times the variance of k-differences
and the Bartlett estimator provides a useful interpretation of the
variance of k-differences for readers familiar with spectral density
estimation; in turn, the variance of k-differences is a useful and intui-
tive time domain counterpart to the Bartlett spectral density es-
timator. To use the Bartlett estimator, we have to decide what k to
use: how many autocovariances or autocorrelations to include in (9)
or how many periodogram ordinates to smooth. The choice of & re-
quires a trade-off between bias and efficiency, and it is usually made
arbitrarily. In this context, a plot of 1/k times the variance of k-
differences versus k is an experimental determination of the proper &
or window width.

Small-Sample Properties

In small samples, 1/k times the variance of k-differences and the Bart-
lett estimator can be biased, and the asymptotic standard errors may
be a poor approximation to the actual standard errors. In this subsec-
tion, I discuss corrections for small-sample bias, and I present some
Monte Carlo experiments to evaluate standard errors.

I corrected for two sources of small-sample bias in the sample vari-
ance of k-differences. These corrections produce an estimator of o}
that is unbiased when applied to a pure random walk with drift. First,
I used the sample mean of the first differences to estimate the drift
term w at all & rather than estimate a different drift term at each %
from the mean of the k-differences. Second, I included a degrees of
freedom correction T/(T — k + 1). Without this correction, 1/k times
the variance of k-differences declines toward zero as k — T for any
process because you cannot take a variance with one data point.

I will use the notation 6% to denote 1/k times the bias-corrected
sample variance of k-differences. The formula for 7% is presented in
the Appendix as equation (A3). The Appendix also contains a proof
that 62 is unbiased when 9, 1s a random walk with drift.

Table 2 presents standard errors from a Monte Carlo experiment
using 100 observations of a random walk with drift. I picked the
innovation variance of this random walk 2 = o3, = 1. The mean of
6 was very close to one at all k in this experiment, confirming the bias
corrections for a pure random walk. The table presents the standard
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TABLE 2

MONTE CARLO STANDARD ERRORS FOR 1/k TIMES THE VARIANCE OF k DIFFERENCES
Model: y, = 1 + y,_, + €; 02 = 1 (T = 100, 500 trials)

100k/T

1 2 3 4 5 10 20 30 40 50

Monte Carlo .137 .160 .200 .231 .263 409 .607 .772 888 .896
Bartlett* Jd15 0 0163 200 231 258 365 516 632 730 816

* This row gives (4k/3T)°.

errors from the Monte Carlo experiment and the corresponding
Bartlett standard errors for comparison. The Bartlett errors slightly
understate the Monte Carlo errors at large /T, but the difference is
small compared to the size of the standard errors. Monte Carlo exper-
iments with different sample sizes and random walk variance confirm
that the standard errors of table 2 scale with &/T and the innovation
variance of the random walk.

What about processes that are more complicated than a pure ran-
dom walk? The Appendix presents a derivation of E(6%) for a first-
order moving average: (1 — L)y, = p + (1 + 08L)e,. It shows that
E(6%) approaches a3, for large &, so & can recover the variance of the
random walk component for this process as well.

I ran several further Monte Carlo simulations to examine whether
the variance of k-differences is robust when applied to more com-
plicated processes for GNP. I fit a variety of ARMA processes to first
differences of log real per capita GNP, simulated 118 observations of
each process, and computed 6% in 100 trials. In each case, the mean of
63atk = 30 was equal to the variance of the random walk component
implied by the estimated ARMA processes—k = 30 was large enough
to identify the random walk from the stationary components—and
the standard errors at large k were close to those implied by table 2,
scaled to the variance of the random walk component.

All the low-order ARMA processes produced 63 lines that rise for k
from 1 to 5 and then are flat at the variance of the random walk
component from k£ = 10 on, unlike figure 1. They implied o}, > 0},
Two processes that do capture the behavior of figure 1 are an AR(15),
figure 4, and AR(2) about a deterministic trend, figure 5. In the next
section, I will discuss why the low-order ARMA models failed to
capture the behavior of figure 1. For now, note that since they repli-
cate the behavior of &} for GNP, figures 4 and 5 can provide small-
sample standard errors. These standard errors are similar to the
asymptotic standard errors used in figure 1.

Figures 4 and 5 also include 63 for GNP from figure 1, marked
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6%(GNP). Since the 65(GNP) line falls inside the one-standard-error
bands, neither model can be rejected for real GNP. However, the
standard errors from the random walk (table 2) or any of the other
low-order ARMA processes are large enough that we cannot reject
them at 5 percent either. (Note that the standard errors scale with the
size of the random walk component. Under the hypothesis of a ran-
dom walk, the standard errors are bigger than indicated in fig. 1.) A
confidence interval includes both O'%Z/O'%y = 0 and 1.

While this is unfortunate, I will argue below that estimates of a
random walk component are limited by the number of nonoverlap-
ping “long runs” in the data set, so that large efficiency gains are not
possible without imposing additional structure on the time-series pro-
cess for GNP. As a result, this and related exercises can provide a
point estimate of the size of a random walk component with associ-
ated standard errors but will not provide useful tests to discriminate
between models that imply various sizes of the random walk com-
ponent.

The parameters of the AR(15) model imply that the variance ratio
o%./0%, = .18, while the AR(2) about a trend implies o%,/0%, = 0.
Hence, the simulations behind figures 4 and 5 also reveal an upward
bias in 63 as an estimate of the random walk component when the
series has a small random walk component or is trend-stationary.

In summary, 1/k times the variance of k-differences 6 provides an
upward-biased point estimate of the variance ratio O'%Z/O'%y of about
.34, and two models with ng/(rgy = .18 and 0 replicate the behavior of
the variance of k-differences of GNP. However, standard errors are
large enough that we cannot statistically reject variance ratios between
zero and one at conventional levels of significance.

IV. Reconciliation with Previous Estimates

Given the definition of the random walk component in terms of the
parameters of a moving average representation, (4) or (8) above, the
obvious thing to do is either to estimate a parsimonious time-series
model for Ay, and calculate 2g; or to identify and estimate a simple
parametric unobserved components model like (4). Campbell and
Mankiw (1987) and Nelson and Plosser (1982) did just that, respec-
tively, and both found large random walk components. Why do Nel-
son and Plosser and Campbell and Mankiw find large random walk
components, while Watson (1986), Clark (1987), and I find small
ones? Though there are small differences in definition—which quan-
tities we look at to measure the importance of unit roots or random
walk components—the major difference is in estimation strategies.



RANDOM WALK IN GNP 911

Nelson and Plosser specified an unobserved components model of
the form

yl U, + Uy
(1 — Lyu, = p + A(L)e, € iid,, (11)

v, = B(L)S, ¥, iid.

(¢, and 3, may be correlated). They identified the two components
from a stylized autocorrelation function of GNP growth rates. If the
first autocorrelation of Ay, is positive but the others are zero, then the
only model of the form (11) that works is A(L) = 1 and B(L) = (1 +
6L). By examining plausible parameter values for this restricted
model, Nelson and Plosser concluded that o2 > ¢3.%

Campbell and Mankiw (1987) estimated parsimonious ARMA rep-
resentations of log GNP, using seasonally adjusted quarterly postwar
data. They measured the importance of the random walk component
by 2a; = A(1), the change in z, (the long-term forecast) in response to
a unit univariate innovation in GNP. They found values for A(1)
equal to or larger than one, which imply an innovation variance of the

random walk component greater than the variance of first differences
of GNP.?

8 This measure of the importance of a random walk component has the conceptual
disadvantage that it depends on which arbitrary unobserved components decomposi-
tion we choose. For example, since every series of the form (11) has a unique moving
average representation, we could rewrite (11) as (1 — L)y, = p + CL)v, v, iid., and
eliminate the stationary component. Alternatively, we could use the Beveridge and
Nelson decomposition of Sec. II to make the component with a unit root into a pure
random walk:

Ye 2, + ¢

(1 = L)z,

w+ v, viid,
CL)L, Giid.

These representations are observationally equivalent to the first form (11), but the
measure o2/a2 changes according to which one we choose. In contrast, the innovation
variance of a random walk component is invariant to the choice of decomposition (fact
2 in Sec. 11). Also, the ratio of the innovation variance of the two components is not a
good measure of their relative importance because the proportion of the variance of Ay,
explained by u, and v, depends on the coefficients of A(L) and B(L) as well as the ratio
o2/od.

9 There are some conceptual disadvantages to scaling a persistence measure by the
univariate innovations of y. The univariate innovations are not observable and must be
inferred from a model; the univariate innovations do not correspond to the “surprise”
movement because we live in a multivariate environment; a series may have small
innovations but a large variance. For example, Ay, = 1.5Ay,_; — .958y,—2 + €. For this
process, 2a; = 2.22 but oi./ok, = (Eaj)2/(2a?) = (.20. However, for the GNP data used
in this paper, there is little qualitative difference between the two definitions, and the
difference in results must be explained by differences in estimation strategy.

Gt
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In performing the Monte Carlo simulations of Section II, I also
found that low-order ARMA models of GNP imply that o} should rise
with %, and they imply a large random walk component, while in fact
o} declines and the estimated random walk component is small. To
replicate the behavior of % for GNP, I had to estimate an AR(15) or
impose a deterministic trend.

To investigate this fact further, I fit a variety of ARMA processes to
GNP growth rates, ranging from white noise out to an AR(15) (see
table 3).'% All representations past white noise are adequate by usual
standards: the Durbin-Watson statistics are close to 2, the significance
levels of the Q-statistic are around .5, the parameters of overfit models
are statistically insignificant, and so forth. But the variance ratio and
Z.a; start at about 1.2 for second-order processes and decline steadily
to a variance ratio of .18 and Za; = .5 for an AR(15). Low-order
ARMA models systematically overestimate the random walk compo-
nent of GNP, even though they adequately represent the series by all
the usual diagnostic tests. The question is, why?

The innovation variance of a random walk component is a property
of the very long-run behavior of a series alone. It is the spectral
density at the frequency w = 0 corresponding to a period or “run” of
infinity, it is related to the infinite sum of the moving average co-
efficients |24;|? or the autocorrelation coefficients (1 + 23p)), and it
corresponds to the effect of a shock today on forecasts into the infinite
future. In theory, then, we should have to wait an infinite amount of
time to get just one observation on the size of the random walk com-
ponent!

In practice, we typically believe that the dynamic response of GNP
to a shock is flat after a suitable long run has arrived.!! This belief is
implicit above: the graphs stop after the thirtieth difference, reflect-
ing a belief that after 30 years the temporary effects of business cycles
are over. The number of nonoverlapping long runs is a rough guide
to the number of degrees of freedom (precisely, the number of pe-
riodogram ordinates) in this exercise. With a 10—20-year long run
there are no more than five to 10 independent observations in 100
years of data and two to four observations in postwar data. Obviously,
using more frequently sampled data does not help.

Estimating an unobserved components model or a parsimonious

' 1 used the RATS program to perform the estimation. Autoregressive models are
estimated by ordinary least squares and moving average models by conditional max-
imum likelihood. The unreported moving average models did not converge.

'! Precisely, if the coefficients of the moving average representation (1) are zero past
a long-run value M < o, then the derivative of the spectral density of Ay at zero is
bounded. If y, is in fact trend-stationary and the spectral density of Ay at frequency zero
is in fact zero, then the slope of the spectral density of Ay at zero is also zero.
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ARMA model is an attempt to circumvent this problem. These mod-
els make identifying restrictions across frequencies: they draw in-
ferences about the long-run (high-order autocorrelation or low-
frequency) dynamics from a model fit to the short-run (low-order
autocorrelation or high-frequency) dynamics. For an example that
demonstrates how “effective” these procedures are, Campbell and
Mankiw (1987) report estimates such as A(1) = 1.306 = .073 for the
20-year forecast of GNP. Since there are only two nonoverlapping
20-year forecasts in their data set, it is clear how heavily their esti-
mates of A(1) depend on the identifying assumption that the series
follow a given low-order ARMA model.

If the short- and long-run dynamics of GNP can both be captured
by the assumed time-series model, these procedures can help estima-
tion because we have much more data on high-frequency fluctuations.
However, if the long-run dynamics cannot be captured in the model
used to study the short run, these identification procedures bias con-
clusions about long-run behavior.

I offer two ways to see this fact. First, recall that the variance of the
shock to the random walk component is related to the sum of the
autocorrelations by

0 o
98 =1 +2) p, (12)
Tay j=1

When we model short-run dynamics, we safely ignore high-order
statistically insignificant autocorrelations or we slightly misspecify
them by fitting a simple model. But all autocorrelations enter into (12)
equally, so a large number of small high-order autocorrelations can
offset a few large low-order autocorrelations.

Second, GNP growth has a positive autocorrelation at short lags
and a small random walk component at long lags. A simple time-
series model may not be able to capture both kinds of behavior. For
example, if (1 — L)y, = » + (1 + 6L)¢,, we need 8 > 0 to capture
positive first-order autocorrelation but 8 < 0 to capture a small ran-
dom walk component. Faced with a choice, maximum likelihood esti-
mates match the short-run behavior (they fit > 0 in the example)
and misrepresent the long-run behavior.

The Appendix contains a demonstration of this property of max-
imum likelihood estimates. It shows that maximum likelihood esti-
mates of a model such as a low-order ARMA or a simple parametric
unobserved components model pick parameters that match the mod-
el's and the actual spectral density over the entire frequency range.
Therefore, maximum likelihood will sacrifice accuracy in the small
region around w = 0 to better match spectral densities at higher
frequencies.
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In summary, the low-order ARMA approach of Campbell and
Mankiw and the unobserved components approach of Nelson and
Plosser cannot match the short-run dynamics and the small random
walk component in the long-run dynamics at the same time. Faced
with the choice, they capture the short-run dynamics and incorrectly
imply large random walk components.

On the other hand, Clark’s (1987) and Watson’s (1986) decomposi-
tions can accommodate the behavior of GNP in both frequency
ranges. (See, e.g., Watson’s fig. 15, in which he shows how his model
can represent a large number of small high-order autocorrelations
that a low-order ARMA cannot match.) Both Watson and Clark find a
small random walk component. However, their decompositions also
imply identifying restrictions to estimate long-run behavior from
short-run dynamics. Since these restrictions are no more or less plau-
sible than Nelson and Plosser’s or Campbell and Mankiw’s, they might
not be able to capture the pattern of high-order correlations in other
data sets as they seem to do for GNP.

Since the size of the random walk component is a property of the
periodogram ordinate at frequency zero alone, any estimation tech-
nique must make some identifying restriction across the frequency
range. The variance of k-differences assumes that past a certain & the
random walk component is adequately identified, empirically deter-
mined as the point in which the graph (fig. 1) flattens out. Therefore,
the variance of k-differences (or any other spectral window estimator)
uses 10—20-year period information to identify the infinite-run prop-
erty, the random walk component. The variance of k-differences does
not use information about dynamics at business cycle frequencies to
identify long-run movements, and this is its important advantage.

V. Conclusion

The variance of k-differences (fig. 1 and table 1) produced a point
estimate that the innovation variance of the random walk component
of GNP is about one-third the variance of yearly GNP growth rates.
That estimate is upward biased for small random walk components:
the parameters of two models that replicated the behavior of the
variance of k-differences of GNP implied variance ratios of .18
(AR(15)) and 0 (AR(2) about a deterministic trend). I conclude that if
there is a random walk component in GNP at all, it is small.

Another way to characterize these results, without reference to ran-
dom walk components, is that GNP growth is positively autocor-
related at short lags, but there are many small negative autocorrela-
tions at long lags. These bring future GNP back toward, if not all the
way back to, its previously forecast value following a shock.
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These results do not mean that “GNP follows an AR(2) about a
deterministic trend.” Our forecasts of the future may quite rightly be
much more variable than the “trend” in GNP we have seen in the
recent 118-year past might suggest.'* These results do mean that an
AR(2) about a deterministic trend or a difference-stationary ARMA
process with a very small random walk component is a good in-sample
characterization of the behavior of GNP.

In reconciling these results with previous research, I argued that
conventional criteria for time-series model identification and estima-
tion can produce misleading estimates of the random walk compo-
nent of a series like GNP. The random walk component is a property
of all autocorrelations taken together, but conventional procedures
concentrate on the first few autocorrelations in order to parsimoni-
ously capture short-run dynamics. When used to estimate the size of a
random walk component, they impose identifying restrictions across
the frequency range to infer the long-run properties of a series from
its short-run dynamics. I argued that, in the absence of credible iden-
tifying restrictions, it is best to leave the short run out altogether, as
the variance of k-differences or some other spectral window estimator
does.

However, this view—that we should use only long-run properties
of GNP data to estimate the long-run behavior of GNP—implies that
standard errors of univariate estimates of the random walk compo-
nent will remain large in century-long macroeconomic data and
larger still in postwar macroeconomic data because there are inher-
ently few nonoverlapping long runs available. These observations ar-
gue against the research strategy that says that the presence of a unit
root and the size of a random walk component are crucial and well-
documented stylized facts that any theoretical model must replicate.

Appendix

A. Derwation of Equation (9)
Start with

(1 - Ly, =p+AL)e = p + Z g€ (Al)
j=0

12 A plausible model for GNP should have some random walk component. If GNP is
truly stationary about a linear trend, then the variance of the forecast error of the level
of GNP is the same for all dates in the far future. As long as there is some random walk
component, the variance of forecast errors will grow unboundedly over the forecast
horizon. However, only a very small random walk component is required to achieve this
desirable property.
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Using
A-IHA -Ly7'=0+L+L%+ ...+ LY,
k=1 J (A2)
y,—y,_,,=kp.+2(2a,)e,]+2( Z )e,_j.
j=0 \=0 =k \M=j-k+1

Taking its variance,
j

ot=i vt =0 =[Sl 3 > of]et

=0\ = j=k\l=j—k+1

To simplify the algebra, express o} as a difference equation

SO

(k — o
1+22p]_ — )kl
1

where p; = the jth autocorrelation of (1 — L)y, p; = 30 marsj/Z7-0 a3.
Therefore,

-1
2
T _
c—%—k [l+(1+2p1)+(1+2pl+2pg)+ Z
B. Derivation of E(G3}) for an MA(1)
Assume that (A1) takes the form
(1 =Ly, =p+(1+6L)k

and assume that €, are i.i.d. normal. The data set is T + 1 observations of the
levels of y, or T observations of its first differences. By definition,

T
6% = T ok T
Ok = KT — k(T — k+ 1) ; [J’; Y-+ T Or yo)] . (A3)

Equation (A2) specializes to
k=1
Y — Y-k =kp + € + 0, + (1 +6) Z €1,
=1
and similarly for yr — yo. Collecting terms in €; and noting that E(¢je;) = 0 if
j # k, we get (after some algebra)

20 1+ (#/T?) - 2WT(T — k= 1] o
k “

A\ 2.2 _
E(6%) = (1 + 8)“0¢ 1 — (k/T)
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Note that (1) as T — ©, E(63) — [(1 + 0)2 — (20/k)]c2 (2 ask—> o, k< T,
E@23) — (1 + 0)202 = 0%,; (3) for 0 = 0, E(63) = o2 = 03, for all &, T such
that k < T.

C. How Maximum Likelihood I'mposes Identifying
Restrictions across Frequencies

Letx, = (1 — L)y, = A(L)e,. Assume that A(0) = 1, that A(L) is one-sided and
has zeros outside the unit circle, so that the spectral density of x is bounded
away from zero, and that A has an inverse, so that x has an autoregressive
representation B(L)x, = €. Consider estimating A(L) or B(L) by maximum
likelihood via a simple time-series or unobserved components model. For
simplicity, assume infinite data, ¢, ~ N (0, a?), and o2 known. (The same point
survives generalization to more complex estimation environments.) In this
case, maximum likelihood is equivalent to

min E[B(L)x,]* subject to B(L) € B, (A4)

where B(L) is the autoregressive representation of the estimated model, and
A is the restricted space of autoregressive representations allowed by the
chosen time-series model. Since variance is the integral of spectral density,
(A4) is the same as

min(27w 1) r |B(e™*)|2S,(¢"**)dw subject to B(e ™) € B.  (AD)

-1

The following expression is equivalent:

min[ |B(e™*) — B(e™™)|2S,(¢"*)dw subject to B(e™**) € B. (A6)
To see this, expand |B — B|?and substitute AA*0? = S, (an asterisk denotes
complex conjugation; I dropped the ¢™*’s). Then (A6) becomes

minJ (BB* + BB* — BB* — B*B)AA*dw. (A7)

-

The first term is just (A5). Since A~! = B, the second term is 21, and the
third and fourth are

[ (BA + B*A*)dw.

Under the assumption that A and B are one-sided and that A(0) = B(0) = 1,

oo

[ BAdo = Jﬂ (1 + 5je_i‘”f)(l + Z a,-e_““f)dw;
T j=1 :

- - j=1

since ™. e do = 0, [T, BAdo = [™, B*A*dw = 27. Therefore, (A6)
reduces to (A5) plus constants.

Equation (A6) is analogous to Sims’s (1972) approximation formula, repro-
duced in Sargent (1979, p. 293). The message of (A6) is that maximum
likelihood attempts to match the frequency response of the autoregressive
representation across the entire frequency range, weighted by the true spec-
tral density of x,. The method of maximum likelihood will sacrifice accuracy
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of the estimated B(e~*) at a point in the frequency range (w = 0) in order to
achieve a better fit over an interval. Similarly, it will sacrifice accuracy in a
small window (20 years to infinity is 7/10 wide) to gain accuracy in a large
window (2—4 years is w/2 wide). If S,(¢~*) is smaller near ® = 0 than else-
where, as the variance of k-differences suggests for GNP, then (A6) shows
that maximum likelihood further deemphasizes accuracy in windows about
zero.
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