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I. Introduction

Theoretical models of asset pricing put few, if
any, restrictions on the behavior of expected re-
turns over time. However, in the implementation
of most tests of market efficiency and/or a partic-
ular market equilibrium model, expected returns
are assumed to remain constant over some pe-
riod of time. Given market efficiency, such an
assumption is unrealistic in light of recent evi-
dence that security returns can (to some extent)
be predicted (see, e.g., Fama and Schwert 1977;
Fama 1981; Keim and Stambaugh 1986; Fama
and French 1987, 1988; and Kaul 1987).

In this article, we attempt to characterize
the stochastic nature of expected returns. Spe-
cifically, we assume market efficiency and test
whether expected returns are constant relative
to a particular alternative hypothesis. Based
on the findings of recent empirical papers, we
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This article charac-
terizes the stochastic
behavior of expected
returns on common
stock. We assume mar-
ket efficiency and pos-
tulate an autoregressive
process for conditional
expected returns. We
use weekly returns of
10 size-based portfolios
over the 1962-85 pe-
riod and find that (1)
the variation through
time in expected re-
turns is well character-
ized by a stationary
first-order autoregres-
sive process; (2) the
extracted expected re-
turns explain a sub-
stantial proportion (up
to 26%) of the variance
in realized returns, and
the magnitude of this
proportion has a mono-
tonic (inverse) relation
with size; (3) the de-
gree of variation in ex-
pected returns also
changes systematically
over time; and (4) the
forecasts subsume the
information in other
potential predictor vari-
ables.
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hypothesize that expected returns follow an autoregressive process.
We use weekly returns of 10 size-based portfolios over the 1962-85
period and attempt to eliminate market microstructure biases through
careful sample selection. We use a Kalman filter technique proposed
by Ansley (1980) to extract expected returns and find that constancy is
strongly rejected for all portfolios. Movements in expected returns are
well characterized by a parsimonious (stationary) first-order autore-
gressive model.

The most striking aspect of our results is that the variation through
time in short-horizon expected returns is a relatively large fraction of
return variances. Moreover, there is a monotonic relation between the
size rankings of the portfolios and the relative time-variation in ex-
pected returns: variation in expected returns explains 26% of return
variance for the smallest portfolio, and this proportion drops system-
atically to 1% for the largest portfolio. The significant time-variation,
and its relation to size, is found during each of the 5-year subperiods,
even when we separately allow for a January dummy. There is also
strong evidence of systematic changes in the relative variation in ex-
pected returns across subperiods.

Finally, to gauge the economic content of the forecasts, we test
whether they are informative with respect to other relevant ex ante
information. Among others, we consider two predetermined vari-
ables—the treasury bill rate and the lagged return on an equal-
weighted market portfolio. Although forecasts based on the autore-
gressive model rely solely on each portfolio’s past returns, they
subsume the information in such variables.

Section II describes the model; the empirical analysis is presented
in Section III. Section IV contains a brief summary.

II. The Model

The choice of a particular model for the time-varying behavior of ex-
pected returns is, by nature, somewhat arbitrary. Ideally, an equilib-
rium model should specify both the stochastic process for, and the
underlying economic determinants of, expected returns. However, ex-
isting asset-pricing theories do not specify any particular a priori re-
strictions on the variation through time in expected returns. In fact,
more recent models of market equilibrium (e.g., Merton 1973; Lucas
1978; Breeden 1979; Cox, Ingersoll, and Ross 1985) do not rule out
even negative expected returns.

Under these circumstances, it becomes essential to empirically char-
acterize the stochastic nature of expected returns. Such an exercise
will help us understand the behavior of expected returns over time and
across different assets and perhaps also help identify the economic
determinants of security returns. The basic approach in this article is
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one of stochastic-parameter estimation, which permits both the iden-
tification and estimation of the expected return process.!

We model movements in expected returns as a first-order autore-
gressive process. The choice of an autoregressive process is based
largely on recent empirical evidence of the predictability of stock re-
turns. A majority of the predetermined variables that have significant
correlations with realized stock returns are themselves characterized
by highly autocorrelated behavior. For example, all three of the (ex
ante) predictive variables used by Keim and Stambaugh (1986) exhibit
large and positive first-order autocorrelations, while higher order auto-
correlations decay across longer lags. Similarly, Fama and French
(1987) use dividend yield to forecast stock returns, and this variable
also exhibits a similar autocorrelation structure (see also Campbell
1987; and Ferson, Kandel, and Stambaugh 1987).

Since movements in expected returns presumably reflect variation
through time in such forecast variables, they themselves may be char-
acterized by an autoregressive process. We, therefore, write our model
as

R, =E _i(R) + ¢, ¢))
and
E.1(R) = OE,_2(R,—1) + us_y, 2

where

R, = realized return on a particular security over period ¢ —
1toz
expected return for a security over period ¢ — jtot — j
+ 1 as of period ¢ — j;
€, ~ independently and identically distributed (i.i.d.) N(0,
2
0c);
u, ~ i.i.d. N0, o2); and
éb=1

E,_i(R,_j+1)

We use a Kalman filter technique proposed by Ansley (1980) to
extract the expected returns. Before discussing the estimation proce-
dure, we present a simple representation of the model.

If expected returns are represented by the process in equation (2),
we can write realized returns as

R, = ¢R;_| + € — by + up_y, 3

1. Ohlson and Rosenberg (1982) employ such an approach to estimate the stochastic
behavior of the systematic risk of the equal-weighted common stock index.
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which, in turn, implies that realized returns can be characterized by an
ARMA (1,1) process of the form

R, = dR,_y + a; — 0a;_. 4

In the inverted form we can then write the conditional expected return
as

E,_1(R)= (4) - e)Rt—l + (')(d) - O)th—z

&)
+0(d — OR_3+....

Invertibility of the process requires that the sum 2‘?;0 0'(db — 0) con-
verge and, hence, that |6| < 1.
In the pure, moving average form, we can write

E._1R)= (b — 0)a,—1 + d(b — 0)a,_»
+ ¢%(b — 0)a,_3 + . ...

For the process to be stationary, the sum of weights, 37—, (¢ — 9),
must converge, and hence || < 1 (see Box and Jenkins 1970).

Therefore, conditional expected returns are an exponentially
weighted sum of past returns, where the weights add up to less than 1.0
(eq. [5]). Conversely, conditional expected returns can be expressed as
a weighted sum of all past shocks, where the weights given to past
shocks decline exponentially (eq. [6]). In other words, if expected
returns follow a stationary process, a shock at ¢t — 1, a,_, has a
progressively smaller effect on future expected returns.?

A special case of this model is one in which the autoregressive pa-
rameter, ¢, is constrained to be equal to 1.0. Under this specification,
expected returns follow a (nonstationary) random walk process, which
leads to realized returns following a random walk-plus-noise process.
This, in turn, implies that a shock at ¢+ — 1, a,_, has two parts, a
permanent and a temporary one. We can interpret (1 — 6)a,_; as the
permanent contribution of a shock to realized returns in the sense that
it affects all future expected returns by this amount. Correspondingly,
0a,_ can be viewed as the temporary contribution. We estimate both
the constrained and unconstrained versions of the model.

©)

2. Rosenberg (1973) first developed such a convergent parameter model, as opposed
to the random-walk model, in which expected returns have no tendency to converge.
Using his notation, we can rewrite our model in the following form:

R, = E,_i(R) + €,
E,_iR) = (1 -8R + 8E,_>(R,—1) + U,

where 3 is the convergence parameter, and R is the population ‘‘norm’’ toward which the
expected return process converges. We can then rewrite realized returns as

R,=(1 -8R +98R,_, + ¢ — d¢_; + U_y,
which is an ARMA (1,1) process.
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III. The Evidence

A. Data Description

We use the Center for Research in Security Prices (CRSP) daily master
file to calculate weekly portfolio returns. The choice of a weekly sam-
pling interval is largely a compromise between the relatively few
monthly observations and the potential biases associated with nontrad-
ing, the bid-ask effect, and so on, in daily data. We use portfolio
returns, rather than individual security returns, because it is much
more difficult to extract the (expected return) signal from noisy weekly
returns of a single security (see Lo and MacKinlay 1987).

At the end of each year, stocks are sorted into 10 portfolios based on
market value (number of shares outstanding times price per share). For
each week (Wednesday close—Wednesday close) of the following year,
1-week simple returns are calculated for securities that actually traded
on both Wednesdays. For the July 1962-December 1962 period we
form portfolios based on market values as of December 1962. Weekly
holding-period security returns in each portfolio are equally weighted
to form 10 series of portfolio returns, which are then continuously
compounded. We also construct an equal-weighted ‘‘market portfolio™’
return using all our sample securities. Hence, we have a total of 1,226
weekly, continuously compounded returns of 10 size-based portfolios
and one market portfolio from July 1962 to December 1985.

B. - Autocorrelations

1. The Weekly Evidence. Table 1 shows the summary statistics for
the weekly portfolio returns for the 1962-85 period. The first-order
autocorrelations are large and significant, and the higher-order auto-
correlations (though significant) decay across longer lags. The returns
on the equal-weighted market portfolio (EWMR) exhibit similar persis-
tence in autocorrelations. Fama (1965) and Lo and MacKinlay (1987)
also find positive autocorrelations in short-horizon returns. (We repli-
cate all our results using excess returns, i.e., returns in excess of the
weekly risk-free return. The results are virtually identical.)

The autocorrelation structure displays a consistent pattern as we go
from the smallest portfolio (R1) to the largest (R10): the magnitude and
persistence of the autocorrelations decline monotonically. However,
higher-order autocorrelations remain significant for all but the largest
portfolio (which exhibits only first-order autocorrelation).

Finally, the first-order autocorrelations of weekly changes in re-
turns, AR, are all significantly negative, while higher-order autocorre-
lations are close to zero. This behavior of sample autocorrelations is
consistent with slowly moving expected returns.

2. Market Microstructure Biases. The positive autocorrelations in
portfolio returns may also be consistent with the presence of market
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TABLE 1 Summary Statistics of Weekly Returns of 10 Equal-weighted Portfolios
of New York and American Stock Exchange Common Stocks, Formed
by Decile Rankings of Market Value of Equity Outstanding at the End
of the Previous Year, 1962-85 (1,226 weeks)

Variable (x) P1 [ Ps P4 Ps Ps x* s()*
R1 41 24 .16 .10 .01 .04 7231 3.158
R2 .35 .20 .14 .10 .01 .04 4650  2.736
R3 31 17 12 .08 .00 .03 3949 2.638
R4 .30 15 .10 .05 .00 .01 3515 2.528
RS 29 13 .08 .05 .00 .00 2896  2.481
R6 27 A2 .07 04 -.01 -.00 2921 2.395
R7 .24 11 .06 .04 -.00 -.01 2747 2.256
R8 22 .09 .07 .03 -.00 -.01 2466 2.153
R9 18 .07 .07 02 —-.02 -.03 2370 2.076
R10 .09  -.00 .04 .00 -.02 -.03 1919 1.978
EWMRY .28 .14 .10 .06 —.00 .01 3358 2.295
AR1% -.35 -—-.08 -.01 02 -.10 .07 0031  3.435
AR2 -.38 -.07 -.01 04 -.10 07 —.0009 3.110
AR3 -4 -.07 -.01 03 -.08 06 —.0026 3.098
AR4 -39 -07 -00 -.00 -.04 02 —.0012  2.996
ARS -39 -.07 -.01 01 -.04 .00 —.0025 2.958
ARG6 -4 -.07 -.01 01 -.04 -—-.00 -.0019 2.893
AR7 -4 -.06 -.01 01 -.02 -.01 -.0016 2.777
ARS -.42 -.06 01 -.00 -.01 -.02 -.0007 2.692
AR9 -43 -.07 .03 -.00 -—.02 -.03 —.0007 2.658
AR10 -.45 -.08 05 -.01 -.00 -.05 -—.0002 2.673
AEWMR -.40 -.07 .00 .01 —-.05 .01 —.0009 2.758

Note.—R1-R10 are the continuously compounded weekly returns on 10 size-based portfolios in
ascending order from smallest to largest. Values ¥ and s(x) are the sample mean and standard
deviation of the variable, and p, is the sample autocorrelation at lag . Under the hypothesis that the
true autocorrelations are zero, SEs of the estimated autocorrelations are about .03. R1 is the smallest
portfolio; R10 the largest.

* The returns are rates of return per week in decimal fraction units x 102.

T EWMR is the equal-weighted market portfolio return.

i The operator A denotes first differences.

microstructure biases caused by infrequent or nonsynchronous trading
and/or bid-ask effects (see, e.g., Fisher 1966; Scholes and Williams
1977; and Cohen et al. 1983).

The basic intuition for positive autocorrelation in portfolio returns is
as follows: an infrequently traded (or small firm) security’s observed
return at time ¢ may contain a component of the price adjustment to
news released at ¢ — 1, which will tend to be positively related to the
observed returns of frequently traded (large firm) securities at ¢t — 1. In
other words, good (bad) news is incorporated immediately in fre-
quently traded firms’ returns and with a lag in the returns of infre-
quently traded firms, thus inducing artificial serial correlation in the
returns on a portfolio of securities.

However, our sampling procedure minimizes the possibility of such
biases, and the evidence indicates that the autocorrelation structure of
returns is unlikely to have been caused by infrequent trading in small-
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firm stocks. First, we use weekly portfolio returns and exclude all
securities that do not trade on the adjacent Wednesdays of a particular
week. Hence, any remaining nonsynchronous trading bias would be
restricted to differences in trading intervals of less than one day, and,
relative to weekly returns, such a bias should be small. Moreover, we
construct weekly portfolio returns by first calculating weekly security
returns and then forming equally weighted portfolios. This method
minimizes the bias in some earlier studies that use arithmetic averages
of returns within the review period. See Blume and Stambaugh (1983)
and Roll (1983) for a discussion of this issue.

Second, the magnitude of the first-order autocorrelations (see table
1) is unlikely to have been caused by microstructure biases. Lo and
MacKinlay (1987) model the nontrading phenomenon as a binomial
process and show that even if (on average) 50% of stocks on the New
York and American Stock Exchanges do not trade each day, the theo-
retical first-order weekly autocorrelation of portfolio returns would be
about 17%. Furthermore, Working (1960) shows that averaging tempo-
rally ordered data can induce first-order autocorrelation in the average/
index, but the magnitude of this autocorrelation approaches a max-
imum of 25% as the number of items in the average/index approaches
infinity. Our evidence indicates that most of the portfolio returns have
first-order serial correlations greater than such extreme theoretical
values. Hence, the high first-order autocorrelations are not peculiar to
just infrequently traded (small) firms.

Third, table 1 also shows persistence in the serial correlation at
longer lags for a majority of the portfolios. Such a pattern in weekly
returns, which should exist if our model for expected returns is a
robust representation of the true process, is again unlikely to have been
caused by market microstructure biases. Finally, our analysis (see Sec.
III) of the properties of the extracted expected returns suggests that
such biases are unlikely causes of the observed autocorrelation struc-
ture in weekly returns.

C. The Model Estimates

We use the Kalman filter and a Marquardt maximum-likelihood proce-
dure to estimate the parameters of our model. The first-order autore-
gressive parameter, ¢, is allowed to vary across portfolios. The results
are reported in table 2.

A stationary autoregressive process for expected returns appears to
be well specified. The estimates of ¢ are significantly different from
both 0.0 and 1.0 for all portfolios, and the residuals behave like white
noise. Moreover, there is a monotonic relation between the estimates
of ¢ and size: the magnitude of ¢ declines systematically from the
smallest- to the largest-sized portfolios. We also estimate the model
with a dummy variable for the first week of January; the results are
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TABLE 2 Weekly Estimates of the Parameters of the Model in Which Expected
Returns Follow a Stationary AR(1) Process
R, =E,_(R) + &, 1
E,_1(R) = bE, »(R,—1) + U1, 2)

where ¢ = 1

Overall Period: July 1962-December 1985 (N = 1,226)

Without January Dummy With January Dummy (D)
Portfolio b+ s(e)t pit b 8¢ s(e) p1

1 .589 .02872 —.001 .649 .068 .02707 .004
(.054) (.037) (.005)

2 .584 .02549 —-.002 .617 .047 .02462 .003
(.061) (.046) (.005)

3 .555 .02501 —-.003 .601 .035 .02452 .003
(.071) (.056) (.005)

4 .489 .02409 —.004 .566 .029 .02376 .004
(.080) (.064) (.005)

5 .430 .02373 —.006 .523 .023 .02352 .002
(.086) (.072) (.005)

6 .403 .02304 —.006 .498 .017 .02292 .001
(.094) (.081) (.005)

7 .394 .02187 —.006 .489 .014 .02179 —.000
(.104) (.091) (.004)

8 217 .02101 —-.010 .463 .010 .02095 —.001
(.028) (.105) (.004)

9 .180 .02042 —.007 .409 .007 .02039 —.003
(.028) (.132) (.004)

10 .087 .01971 .001 .086 .001 .01971 .001
(.028) (.028) (.004)

Note.—Portfolio size ranges from smallest size (1) to largest size (10). Numbers in parentheses
below estimated coefficients are SEs. R, = continuously compounded realized return for week ¢;
E,Z_j(R,_j+1) = expected return over week t — jtotr — j + 1as of week ¢t — j; ¢, ~ N(0, o2); u,~ N,
o).,

* ¢ = the estimated autoregressive parameter in eq. (2).

t s(e) = residual standard error.

t p; = residual autocorrelation at lag 1. Under the hypothesis that the true autocorrelations are
zero, the SEs of the residual autocorrelations are about .03.

§ & = estimated coefficient on the dummy variable (D), where D = 1 for first week in January, and
D = 0 V other weeks.

shown in table 2. The dummy variable is significant for the smaller
eight market-value portfolios, which indicates that seasonality is not
just a small-firm phenomenon. Moreover, the estimates of ¢ maintain
their systematic relation with size.

Evidence of a stationary expected-return process is consistent with
the results of Fama and French (1987), who find positive autocorrela-
tions in expected returns, which are documented in their regressions of
long-horizon returns on dividend/price ratios. The pattern of the coef-
ficients in these regressions for different holding periods is suggestive
of a mean-reverting expected-return process. However, the time-
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variation in short-horizon expected returns is quite different from the
slowly decaying variation in long-horizon expected returns found by
Fama and French. Specifically, our estimates of ¢ (which are always
less than 0.65) indicate rapidly decaying time-variation in expected
returns: the effects of an expected-return shock are largely dissipated
after a month.

The conclusion that expected returns follow a stationary autoregres-
sive process is supported when we estimate the model in which ¢ is
restricted to be equal to 1.0 (or, equivalently, expected returns follow a
random walk). The results, not reported, show strong evidence of
movements in expected returns across all portfolios and a systematic
relation between the magnitude of such variation and the size rankings
of the portfolios. However, the constrained specification is clearly
misspecified. First, the residuals from the model exhibit significant
first-order autocorrelations for all portfolios. Second, although the
extracted expected returns from the constrained model contain
significant information about subsequent realized returns, they have no
marginal explanatory power in regressions of realized returns on fore-
casts obtained from both the constrained and unconstrained models.

Brown, Kleidon, and Marsh (1983), hereafter BKM, also use a Kal-
man filter technique to analyze the variation through time in the size
effect. Specifically, they test for nonstationarity in the excess returns
of 10 size-based portfolios, where excess returns are defined as devia-
tions from returns predicted by the Sharpe-Lintner version of the capi-
tal asset-pricing model (CAPM). Their results indicate that the assump-
tion of constancy of excess returns is most seriously violated for the
smallest and largest portfolios.

Our objective is quite different from the BKM study since we are
concerned more generally in the stochastic process for time-varying
expected returns. Unlike BKM, our approach has the advantage of not
imposing, and therefore not requiring the estimation of, any particular
asset-pricing model with its attendant assumptions. We only require
the assumption of market efficiency, which enables us to extract ex-
pected returns by a linear projection of realized returns on past infor-
mation (in particular, past portfolio returns). Consequently, we do not
entertain the notion of excess returns.

D. Statistical Properties of Weekly Expected-Return Forecasts

Table 3 shows regressions of weekly portfolio returns, R,, on the ex-
tracted expected returns (with the January dummy) from the stationary
autoregressive model, ERAR,_ ;. The criteria for a good extracted ex-
pected-return series are: (1) conditional unbiasedness, that is, an inter-
cept close to zero and a slope coefficient close to 1.0, and (2) serially
uncorrelated residuals. The extracted expected returns are condition-
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TABLE 3 Estimates of Regressions of Weekly Realized Portfolio Returns
on Extracted Expected Returns, July 1962-December 1985

R, = o + BERAR,_; + 7,

Portfolio & B R* pit

1 —.000003 1.000 .265 .004
(.00088) (.086)

2 —.000001 .998 191 .004
(.00083) (.099)

3 .000009 994 136 .005
(.00084) (.112)

4 .000001 .997 117 .005
(.00084) (.116)

S .000005 995 .101 .003
(.00080) (.115)

6 .000004 995 .084 .002
(.00081) (.125)

7 .000007 .994 .067 .001
(.00081) (.140)

8 .000004 .995 .053 .000
(.00077) (.152)

9 .000010 992 .035 -.002
(.00078) (.184)

10 —.000000 1.000 .007 .001
(.00104) (.421)

Note.—The numbers in parentheses below the estimated regression coefficients are SEs based on
White’s (1980) consistent heteroskedasticity correction. Portfolios are listed from smallest size (1) to
largest size (10).

R, = continuously compounded realized return for week 7; ERAR,_; = expected return for week ¢
as of week t — 1 extracted from the model, in which expected returns follow a (stationary) AR(1)
process (with January dummy); v, = random disturbance term.

* R? = (adjusted) coefficient of determination.

t p; = residual autocorrelation at lag 1. Under the hypothesis that the true autocorrelations are
zero, the SEs of the residual autocorrelations are about .03.

ally unbiased for all portfolios: the slope coefficients are all close to
1.0, while the intercepts are close to zero.> Moreover, the regression
residuals behave like white noise.

The most striking aspect of the regressions in table 2 is the large
proportion of variance of short-horizon returns explained by variation
through time in expected returns. The (adjusted) R? values of up to
26% are much larger than those typically found in tests that use
monthly data. Moreover, there is a monotonic relation between the

3. The heteroskedasticity test of White (1980) produces chi-square statistics well
above conventional significance levels for most portfolio regressions. We therefore re-
port the more conservative standard errors based on the heteroskedasticity-consistent
method. We also have measurement errors in the extracted expected returns, ERAR,_,,
since they are estimates. However, most methods for the computation of corrected
standard errors (for the errors-in-variables problem) assume homoskedastic errors (see,
e.g., Murphy and Topel 1985). Since heteroskedasticity is potentially a more serious
problem in stock return regressions, we choose to report the already conservative het-
eroskedasticity-consistent standard errors.
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TABLE 4 Estimates of Variances of Realized Returns,
Expected Returns, and Unexpected Returns on
10 Equal-weighted Portfolios

Portfolio R* ERAR, _, URAR,
1 .099751 .026500 .073291
2 .074866 .014374 1060592
3 .069596 .009615 .060136
4 .063921 .007562 .056435
5 .061530 .006300 .055320
6 .057340 .004887 .052519
7 .050903 .003498 .047464
8 .046336 .002502 .043871
9 .043099 .001574 .041560
10 .039138 .000298 .038847
Note.—R, = continuously compounded realized return for week f;
ERAR,_, = estimated expected return for week ¢ as of week ¢t — 1 extracted

from the model in which expected returns follow a (stationary) AR(1) process
(with January dummy); URAR, = unexpected return.
* The estimated variances are reported in decimal fraction units x 102

size rankings of the portfolios and the relative time-variation in ex-
pected returns: variation in expected returns explains 26% of return
variance for the smallest portfolio, and this proportion drops system-
atically to about 1% for the largest portfolio. Hence, not only is the
variance of realized returns for small firms systematically higher than
for large firms (see table 1), but the relative variance of expected re-
turns is higher as well. This, in turn, enables the signal extraction
technique to detect the significant variation in the expected returns of
(especially) the smaller firms.

The variability of movements in expected returns across portfolios
can perhaps be better gauged by comparing the absolute variances of
the expected-return components of different portfolio returns. In table
4 we present the estimated variances of realized, expected, and unex-
pected returns for all 10 portfolios. The absolute variation in the ex-
pected returns of the smallest portfolio is about 90 times the corre-
sponding variation of the largest portfolio. Moreover, the estimated
variance of expected returns declines systematically as the size of the
portfolio increases.

Finally, to analyze the extent of variation in expected returns over
different time periods, we reestimate the model over five subperiods
(results not reported). The significant aspect of the results is the evi-
dence of systematic changes in the relative variation in expected re-
turns over time, across portfolios. Typically, the proportion of vari-
ance in realized returns explained by the extracted forecasts during the
seventies is about twice the proportion explained in the sixties and
eighties. This result can serve as a useful guide in identifying the impor-

‘tant economic determinants of security returns.
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TABLE § Estimates of Regressions of Weekly Realized Portfolio Returns
on Predetermined Variables and Extracted Expected Returns,
July 1962-December 1985

R, =a + B RF,_, + B, EWMR,_, + Bs ERAR,_; + =,

Portfolio & B, B, B3 R** ot
1:
@) 0107 —3.263 e .. .002 41
(.0018) (1.478)
(ii) .0054 .. .550 - 159 .02
(.0008) (.052)
(iii) .0012 —.666 .166 .849 273 —.06
(.0016) (1.309) (.059) (.108)
2:
i) .0086 —3.708 .. ... .004 .35
(.0016) (1.319)
(ii) .0032 . .434 ... 132 -.02
(.0008) (.045)
(iii) .0019 —1.382 121 .825 195 -.05
(.0015) (1.222) (.060) (.139)
3:
@) .0075 —-3.335 - .. .003 31
(.0015) (1.298)
(ii) .0026 ... .378 . .108 —.04
(.0007) (.044)
(iii) .0020 —-1.371 119 .769 .140 —.04
(.0016) (1.234) (.067) (.176)
4:
@) .0071 —3.362 ... - .004 .29
(.0015) (1.294)
(ii) .0023 .. 342 . .096 —.03
(.0007) (.042)
(iii) .0021 —1.553 .097 775 119 -.02
(.0016) (1.250) (.066) (.190)
S:
@) .0062 —3.148 .. .. .003 .28
(.0014) (1.287)
(ii) .0018 . 310 e .082 -.01
(.0007) (.041)
(iii) .0019 —1.551 .040 .883 .101 —.00
(.0015) (1.257) (.075) (.217)
6:
@) .0063 -3.178 ... ... .004 .26
(.0014) (1.270)
(ii) .0020 ... 270 . .067 .00
(.0007) (.039)
(iii) .0017 —1.640 —.027 1.063 .084 .01
(.0015) (1.247) (.085) (.272)
7.
@) .0056 —2.631 e ... .003 .24
(.0013) (1.192)
(ii) .0019 ... 231 .. .055 .00
(.0006) (.037)
(iii) .0015 —1.440 —.007 1.005 .067 .01
(.0014) (1.164) (.075) (.287)
8:
@) .0050 —2.370 e .. .002 21

(.0013) (1.150)
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TABLE 5 (Continued)
Portfolio & B: B, B, R** pit
(ii) .0018 ... .191 ... .041 .01
(.0006) (.035)
(iii) .0010 -1.331 —.060 1.235 .053 .01
(.0014) (1.131) (.082) (.360)
9:
@) .0046 —2.086 .. ... .002 18
(.0012) (1.122)
(ii) .0019 ... .143 .. .024 .03
(.0006) (.033)
(iii) .0005 —1.291 —.098 1.498 .036 .01
(.0014) (1.107) (.074) (.412)
10:
@) .0039 —1.836 ... .. .001 .08
(.0012) (1.131)
(ii) .0017 ... .067 ... .005 .02
(.0005) (.031)
(iii) .0018 —1.583 .002 .947 .007 .00
(.0018) (1.123) (.060) (.825)

Note.—The numbers in parentheses below the estimated regression coefficients are SEs based on
White’s (1980) consistent heteroskedasticity correction. Portfolios are listed from smallest size (1) to
largest size (10). R, = continuously compounded realized return for week ¢; RF,_, = therisk-free rate
calculated as the continuously compounded return on a 1-week treasury bill for week ¢, known at
week t — 1; EWMR,_,; = continuously compounded return on the equal-weighted market portfolio
for week t — 1; ERAR,_ = estimated expected return for week 7 as of week ¢ — 1 extracted from the
model in which expected returns follow a (stationary) AR(1) process (with January dummy); v, =
random disturbance term.

* R? = (adjusted) coefficient of determination.

t p1 = residual autocorrelation at lag 1. Under the hypothesis that the true autocorrelations are
zero, the SEs of the residual autocorrelations are about .03.

E. The Information Content of the Extracted Expected Returns

We now consider the information content of the expected returns ex-
tracted using the stationary model, ERAR,_;, with respect to other
relevant ex ante information. It is by no means necessary that the
expected returns, conditioned solely on each portfolio’s past returns,
should also incorporate other information. However, we can get an
idea of the economic content of the forecasts by testing whether the
information in other relevant ex ante variables is already impounded in
them.

The choice of the predetermined variables is largely dictated by the
findings in other papers and data availability considerations. Among
other variables, we consider the nominal risk-free rate (Fama and
Schwert 1977; and Shanken 1987)* and the lagged return on the equal-

4. Since new treasury bills are introduced every Thursday in the Wall Street Journal
quotations, the estimated risk-free rate series is for an 8-day instrument. We assume
skip-day settlement and continuously compound the returns. The price used to calculate
the return is an average of the bid-and-ask prices derived from the quoted bid/ask
discount rates.
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weighted market portfolio (Gibbons and Ferson 1985). Moreover, since
the January effect is statistically significant, we use the extracted ex-
pected returns which include the January dummy.

Regressions (i) and (ii) in table 5 show estimates of regressions of
realized portfolio returns on predetermined variables for the overall
period. The risk-free rate, RF,_, is significantly negatively related to
the returns of all portfolios (see regressions [i]). There is residual auto-
correlation in all the regressions, which implies that the standard errors
are biased. However, if the information set incorporated in expected
returns contains elements (other than RF,_,) that are autocorrelated,
then we would expect such autocorrelated residuals.

The lagged return on the market, EWMR, _ 4, is also significantly (and
positively) related to realized returns of all the portfolios (see regres-
sions [ii]). These regressions have lower standard errors than regres-
sions (i), and the residuals behave like white noise.

Estimates of regressions, in which all of the predictor variables and
the extracted expected returns from the stationary model, ERAR,_,
are included simultaneously, are also shown in table 5 (see regressions
[iii]). The expected return forecasts are informative with respect to the
two ex ante variables. Specifically, the forecasts contain all the infor-
mation in the risk-free rate that is pertinent to expected returns; RF,_;
has no marginal explanatory power in any of the portfolio regressions.

The lagged return on the market, EWMR,_, again has no marginal
explanatory power in the larger portfolio (4-10) regressions and has
only some explanatory power in the regressions of portfolios 1-3. The
fact that the explanatory power of the lagged market return drops
substantially due to the inclusion of the extracted expected returns
suggests that the autoregressive model cannot merely be capturing
autocorrelation in portfolio returns due to infrequent trading in small
stocks. In fact, the remaining explanatory power of EWMR,_ in the
small-sized portfolio regressions may be a reasonable estimate of the
infrequent trading effect (see simulation results of Lo and MacKinlay
[1987]). More important, the lagged market return does not signifi-
cantly alter the explanatory power of the extracted forecasts.

We also use other ex ante information to predict returns (results not
reported). Based on the findings of Campbell (1987), we use various
term-structure variables—for example, lagged weekly returns on 1-,
3-, 6-, and 12-month treasury bills (in excess of the weekly risk-free
rate). Following Shanken (1987), we use a measure of interest rate
volatility in an attempt to capture shifts in the investment opportunity
set (see Merton 1973). Finally, we use the lagged return on the smallest
portfolio. However, these variables either do not have systematically
significant relations with portfolio returns or are rendered insignificant
in regressions that also include ERAR,_;.

Hence, forecasts extracted from the stationary autoregressive model
(which rely solely on each portfolio’s past returns) tend to subsume the
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information in other potential predictor variables. This result is impor-
tant because it supports the robustness of our parsimonious, autore-
gressive model for expected returns. Regressions (iii) in table 5 also
indicate that the predictor variables do contain some information about
expected returns because the standard errors of the coefficients of the
extracted expected returns are larger than in table 3 (especially for the
large-firm portfolios).

IV. Summary and Conclusions

In this article, we attempt to characterize the stochastic behavior of
expected returns on common stock. We assume market efficiency,
and, based on recent empirical evidence, we postulate an autoregres-
sive process for conditional expected returns.

We use weekly returns of 10 size-based portfolios over the 1962-85
period and extract expected returns for all portfolios. In implementing
our signal-extraction methodology, we attempt to eliminate market
microstructure biases through careful sample selection. Our major
findings are: (1) the time-variation in expected returns is well char-
acterized by a parsimonious (stationary) first-order autoregressive
model; (2) the variation through time in short-horizon expected returns
is a relatively large fraction of return variance, and this fraction has a
monotonic (inverse) relation with the size rankings of the portfolios;
(3) there is strong evidence of systematic changes in the relative varia-
tion in expected returns across subperiods; and (4) although the fore-
casts based on a stationary model rely solely on each portfolio’s past re-
turns, they subsume the information in other potential predictor variables.

This article, therefore, explicitly characterizes the nature of ex-
pected return movements. Our findings reveal significant variation in
weekly expected returns, and this variation has systematic patterns
both over time and across portfolios. Furthermore, the fact that the
expected returns tend to incorporate other relevant economic informa-
tion (including the effects of the lagged market return) suggests that the
signal extracted from past returns is not due to market microstructure
biases.

However, there are several unexplored issues. First, future research
is needed to determine the underlying economic determinants of the
time-variation in expected returns. This will help us understand the
nature of the systematic differences in the degree of relative variation
in expected returns both across assets and over time.> Second, the
rapidly decaying time-variation in short-horizon expected returns ap-

5. Our results indicate that the expected risk premium on the market follows a station-
ary process. Preliminary results also show that systematic risk measures (i.e., betas
computed relative to the equal-weighted market portfolio) change slowly over time (see
also Ohlson and Rosenberg 1982). Hence, it appears that expected returns on common
stock vary due to changes in both risk premiums and risk measures.
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pears to be quite different from (and unrelated to) the slowly moving
long-horizon expected returns. An understanding of the basic determi-
nants of expected returns may also help explain these differences.
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