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Random vs. Systematic Changes

The subject matter of this paper is bound to be considered heresy.
I can say that without equivocation, because whatever views anyone ex-
presses on this subject are sure to conflict with someone else's deeply-
held beliefs. 1

For the purpose of exposition, I can characterize these beliefs as
falling into two classes. Apparently there are, or were, a substantial
group of economists who believe(d) that common stock prices tended to
move in a deterministic, cyclical manner, where the term "cyclical” is
taken, not in the sense that the National Bureau uses it, but in the mechan-
ical sense of a movement perfectly predictable intiming and extent. These
cycles might be quite complex, but diligent effort, and perhaps Fourier
analysis, would eventually solve the riddle and bring a pot of gold to the
persevering.

1 There have been a considerable number of articles dealing with the subject of inde-
pendence in price changes in speculative markets over the last two decades. The
earliest work on this subject was by a French mathematician statistician, M. L.
Bachelier, Ref. (2). H. Working investigated the subject in Ref. (21). A. Cowles and
H. Jomes did further work in 1937, Ref. (6). H. Working followed with Ref. (23), and
M. G. Kendall examined the subject in Ref. (13). More recent investigations have
been made by M. F. M. Osborne, Ref. (17); H. Houthakker, Ref. (10); S. Alexander,
Ref. (1); A. Larsen, Ref. (15); H. Working, Ref. (22); A. Cowles, Ref. (5); and
H. Roberts, Ref. (18).

Related to this question is the recent extensive controversy about risk premiums for
which a bibliography is available in P. H. Cootner, Ref. (4), P. H. Cootner, "Risk
Premiums: Seek and Ye Shall Find" (forthcoming).

There are also a number of unpublished sources on the subject: a paper by Paul A.
Samuelson on Brownian motion in the stock market; a Ph.D. thesis by Arnold Moore
at the University of Chicago; a bachelor's thesis by R. Cryer at M.I.T.; and related
work in Ph.D. theses on put, call, and warrant markets by Richard Kruizenga at
M.I.T., Case Sprenkle at Yale and James Boness at Chicago. Other work is in prog-
ress on commodity markets at the Food Research Institute of Stanford University,
principally by H. Working, and at Cornell University under the direction of S.Smidt
and M. DeChazeau.
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Except for a small fringe of opinion largely confined to stock mar-
ket professionals, this point-of-view is moribund today, but its refutation
has bred an important and intellectually intriguing t:ountertheory.2 The
stock exchange is a well-organized, highly-competitive market. Assume
that, in fact, it is a perfect market. While individual buyers or sellers
may act in ignorance, taken as a whole, the prices set in the marketplace
thoroughly reflect the best evaluation of currently available knowledge. If
any substantial group of buyers thought prices were too low, their buying
would force up the prices. The reverse would be true for sellers. Except
for appreciation due to earnings retention, the conditional expectation of
tomorrow's price, given today's price, is today's price.

In such a world, the only price changes that would occur are those
which result from new information. Since there is no reason to expect
that information to be non-random in its appearance, the period-to-period
price changes of a stock should be random movements, statistically inde-
pendent of one another. The level of stock prices will, under these con-
ditions, describe what statisticians call a random walk, and physicists call
Brownian motion. In the normal course of events, the level of prices, i.e.,
the summation of these random moveménts,will show movements that look
like cycles but in fact are not. 3 Nothing can be learned about the future
from looking at these price series. Buying a stock based on signals from
such a chart will produce results no better than those from repeated flip-
ping of a fair coin. The time might just as well be spent on analyzing the
results of a fair roulette wheel.

You can see why the idea is intriguing. Where else can the econo-
mist find that ideal of his - the perfect market? Here is a place to take
a stand, if there is such a place.

Unfortunately, it is not the right place. The stock market is not a
random walk. A growing number of investigators have begun to suspect
it,4 and I think I have enough evidence to demonstrate the nature of the
imperfections. On the other hand, I do not believe that the market is
grossly imperfect. In fact, I do not know ﬁy the process I see going on
in the market is not worthy of the name perfection too. It strays from
"perfection” only to the extent that it defines the Frank Knight - Milton

2 A more complete exposition can be found in H. Roberts, Ref. (18), or H. Working,
Ref. (23).

3 For discussions of this phenomena, see W. Feller, Ref. (8), and J. E. Kerrich,
Ref. (14).

4 Principally Houthakker, Alexander, Moore, and Larsen, though it should be pointed

out that Moore and Larsen prefer to stress the randomness rather than the imper-
fections.
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Friedman assumption of profitless speculation. Even more interesting,
perhaps, is that my model is perfectly compatible with much of what I
interpret Wall Street chart reading to be all about. Like the Indian folk
doctors who discovered tranquilizers, the Wall Street witch doctors, with-
out the benefit of scientific method, have produced something with their
magic, even if they can't tell you what it is or how it works.

In this paper I will present a hypothesis which fits the data much
better, and which has implications substantially different from that of the
random walk hypothesis. There is a certain tentativeness about these re-
sults, however, because the testing is not quite complete. For one thing,
although the basic outlines of the hypothesis I will present here were
formulated in advance of the testing, some modifications were made in the
course of the testing, so it is not truly appropriate to consider the resuits
to be a proof of the theory. Secondly, while the hypothesis was tested
against a wide variety of stock prices, the stock sample was not randomly
drawn. Both of these deficiencies will be eliminated in further testing
now under way, but for the time being these results are only tentative.

THE MODEL

First, I will present my own model of stock market behavior along
with its statistical implications. After that I will compare the results of
some statistical analysis with the implications of the two competing mod-
els. Finally,I will outline the further work contemplated along these lines
and their implications for tests of randomness.

Let us start with the concept of a perfect market held by random
walk theorists, but let us achieve this perfection without assuming a high
degree of knowledgeability of the participants. They are all engaged in
other occupations in which they have a comparative advantage so it is very
costly, at least in terms of opportunity cost per unit of relevant informa-
tion uncovered, for them to devote time to the relevant kind of stock mar-
ket research. (In Stiglerian terms, their cost of search is very high)
As a result, they tend to accept present prices as roughly representing
true differences in value and they choose between stocks largely on the
grounds of their attitudes toward risk. Those of them that do choose
among stocks on the basis of information about future prospects are just
as likely to be wrong as not. Demand for stocks will mostly depend upon
changes in the level of income and its distribution among stockholders
with different preferences. As the present moves into the future, the
stockholders will face all kinds of surprises, but most of the surprises
which come this week will not be related, in any systematic manner, to the
surprises which will come next week.

5 G. Stigler, Ref. (20).

In R. Nelson's terms, they have a prediction equation with a larger R? (correlation
coefficient) and so the value of a piece of information is greater. Ref. (16).
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Now let me introduce another group of investors and speculators
who specialize in the stock market. As professionals, their opportunity
cost of research is much less than that of the uninformed (largely because
they know what to look for and where), but it is, nevertheless, non-negative.
They do have an idea of what is going to happen in the future, but they can-
not profit from it unless the current price deviates enough from the ex-
pected price to cover their opportunity costs. Their profits will come
from observing the random walk of the stock market prices produced by
the non-professionals until the price wanders sufficiently far from the ex-
pected price towarrant the prospect of an adequate return. In other words,
when prices have deviated enough from the expected price that they can
expect future surprises to force prices toward their mean more often than
not. Competition among these professionals will tend to restrict the poten-
tial profit to the opportunity costs. Furthermore, they must recognize the
possibility of error in their own forecasts and must recognize that even if
they buy the stock at a favorable price the actual rate at which the stock
appreciates or depreciates will be governed in fact by the random rate of
approach to the expected price.

Let me illustrate. For simplicity, assume that every professional
has the same expectations, and the same opportunity costs. Then prices
will behave as a random walk with reflecting barriers. In something like
the manner once suggested by Taussig, prices within those upper and lower
limits will tend to move like a random walk. If prices fell to the lower
limit, however, the rate at which the price moves back to the expected
price is governed by the random process which operates within the bar-
riers, so that even if their expectations are correct, their profit rate is
still a stochastic variable. In addition, the individual buyer is unlikely to
know for certain that his estimate of the price is correct or that other
professionals share his estimate.

Furthermore, within this class of professionals, another sort of
random walk environment operates. There is no reason to expect that
changes in the price expectations of professionals should occur in other
than a random manner. As a result, there probably would also be random
changes in the trends around which the random walk takes place. That is,
the path of stock prices over any substantial period of time would be com-
posed of a random number of trends, each of which is a random walk with
reflecting barriers. There is much random behavior in such a series, but
it is substantially different from a random walk, and while it has some
implications which are quite similar to that of a random walk, it has others
which are strikingly different, as we shall see before long.

Note, for example, the customary distribution of weekly changes in
the logarithms of stock prices. The mean of such weekly changes is very
likely to be less than 0.005; the standard deviation, on the other hand, is
likely to be much larger, usually between 0.02 and 0.03. (For these pur-
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poses, we will accept this fact as given, although it could be developed
from the general theory.) (Table I.) One implication of this, of course,
is that it would be very difficult to detect the significance of any weekly
mean price change if the series were truly a random walk. But the high
variance also means that any professional who did feel knowledgeable
about the mean price would still want to set his buying price considerably
away from the mean to protect against risks. If the lower edge of the bar-
rier were to average several weekly standard deviations away from the
mean, by far the greater portion of the successive weekly price changes
would be totally uncorrelated with each other. On the other hand, when
prices neared the barrier there would be a tendency for some negative
autocorrelation, since movements to the barrier would be more likely to
be followed by movements in the opposite direction. The net effect would
be a moderate negative correlation near the boundary which would be
heavily diluted by the number of cases when the price was near the mean
which would show no such negative autocorreiation. 6

In addition to this negative correlation, the effect of the barriers
would be to produce more small price changes than would be expected
from a normal distribution of price changes. When unencumbered by the
barrier, the central limit theorem would tend to ensure that the total
weekly effect of a large number of individual transaction price changes
would be approximately normal. The existence of the barrier, however,
would cut short some of the price movements toward the barriers without
restricting as much the very large price movements which could still
occur in the direction away from the barriers. We would expect the dis-
tribution of price changes over short periods of time to be more lepto-
kurtic under such conditions than the normal distribution.

As we look at changes over longer periods of time, however, other
factors, which are relatively unimportant in the case of weekly changes,
become much more significant. I have spoken of stock price series as
composed of several trends of different slopes. As we lengthen the period
over which we take differences the mean becomes more important relative
to the standard deviation. (In a random walk this would be true because
the increase in the mean of the price changes is directly proportional to
the interval over which the price change is measured, while the standard
deviation increases only as the square root of the interval. If there are
reflecting barriers, the standard deviation will increase less rapidly than
in a random walk so this effect will be even more pronounced.) Further-
more, the mean of each of the component trends becomes more dis-
tinguishable from the group mean. This will result in an increasing
element of positive autocorrelation as long as the time interval of the

6 These, and similar results discussed later in the paper can readily be derived
from basic texts in Markov chain theory. On this point, e.g., see Kemeny and Snell,
Ref. (11).
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TABLE 1

Company Dates Standard
number Company covered Mean deviation

1 Socony Mobil 56-60 -0.0001 0.0298

2 Westinghouse 56-60 0.0025 0.0249

3 Chrysler 56-60 -0.0020 0.0297

4 Procter and Gamble 56-60 0.0042 0.0226

5 General Motors 56-60 0.0004 0.0208

6 RCA 56-60 0.0011 0.0310

7 Goodyear 56-60 0.0026 0.0257

8 General Foods 56-60 0.0046 0.0258

9 Commercial Solvents 56-60 0.0013 0.0355
10 B. F. Goodrich 56-60 -0.0008 0.0300
11 du Pont 56-60 -0.0001 0.0195
12 May Department Stores 56-60 0.0010 0.0206
13 Standard of New Jersey 56-60 0.0000 0.0215
14 Brunswick Corporation 56-60 0.0130 0.0452
15 Ford Motors 56-60 0.0011 0.0257
16 Douglas Aircraft 56-60 -0.0025 0.0281
17 North American Aviation 56-60 0.0013 0.0382
18 Boeing Aircraft 56-60 0.0012 0.0392
19 International Paper 56-60 0.0003 0.0230
20 American Can 56-60 0.0000 0.0190
21 Allegheny Steel 56-60 0.0013 0.0372
22 Bethlehem Steel 56-60 0.0008 0.0226
23 Byers Corporation 56-60 -0.0006 0.0618
24 Carpenter Steel 56-60 0.0030 0.0383
25 Colorado Fuel and Iron 56-60 -0.0014 0.0334
26 Continental Steel 56-60 0.0033 0.0465
27 Granite City Steel 56-60 0.0033 0.0355
28 Inland Steel 56-60 0.0020 | 0.0269
29 Interlake Iron 56-60 -0.0002 0.0386
30 Jones and Laughlin 56-60 0.0014 | 0.0320
31 Pittsburgh Steel 56-60 -0.0025 0.0665
32 Republic Steel 56-60 0.0013 0.0274
33 U. S. Steel 56-60 0.0019 0.0242
34 Wheeling Steel 56-60 0.0005 0.0288
35 Conoco 51-55 0.0041 0.0207
36 Studebaker-Packard 54-60 -0.0017 0.0648
37 Dow Chemical 55-60 0.0022 0.0264
38 Coca Cola 56-60 0.0028 0.0221
39 Nabisco 50-60 0.0015 0.0164
40 I1BM 50-60 0.0049 0.0277
41 Reynolds Metals 50-60 0.0056 0.0406
42 Int'l. Telephone and Telegraph 50-60 0.0004 0.0349
43 Brown and Bigelow 56-60 0.0022 0.0204
44 Interstate Department Stores 56-60 0.0025 0.0282
45 National Dairy Products 50-60 0.0031 0.0234
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differencing is less than the length of the trends. That is, the successive
changes in an uptrend will all tend to be higher than the overall mean and
the successive changes in a downtrend will all tend to be lower. T Asthe
differencing interval exceeds the length of some of the trends, this posi-
tive autocorrelation will begin to disappear.

The positive autocorrelation is also present in changes over one-
week periods, but over such short periods the absolute magnitude of the
differences in the means is so small relative to the standard deviation
that the effect is negligible. It simply becomes increasingly prominent
particularly when measured against the negative serial correlation in-
duced by the barriers as the time interval increases.

In addition, the kurtosis of the distribution over longer differencing
intervals will also change if the reflecting barrier hypothesis is true. If
there were only a single trend, the distribution of price changes over suc-
cessively longer time intervals will approach that of a rectangular dis-
tribution: i.e., it will be equally likely to get any value for the price
change equal to or less than the width of the barriers. If the series were
a single random walk, the distribution of price changes over successively
longer intervals should become more and more normal as the central
limit theorem becomes more and more applicable. So, if the random walk
hypothesis is correct, kurtosis should be near 3 at weekly intervals and
get closer to 3 as time goes on. If the reflecting barrier or trend hypothe-
sis is correct, kurtosis should be greater than 3 to begin with and should
approach the kurtosis of the rectangular distribution in the limit if a
single trend is involved.

Where trends change over time, the predicted pattern is not com-
pletely clear, but the average value of the stock price trend over any sub-
stantial period of time is likely to be severely limited by the possibility of
transferring funds among different investment outlets. Thus it is likely,
under the reflecting barrier hypothesis, that kurtosis of the price changes
will be somewhat larger than that of a rectangular distribution.

The primary element underlying all of these implications is that
the stock price series will simply not be free to wander as much as they
would if the series were a random walk. This tendency can be tested
directly by utilizing the distributions of the range of a random walk de-
veloped by W. Feller. 8 Given these distributions it is possible to simply

7 This would be true even if each series was composed of several random walks
each with a different mean. In this latter case, however, the positive autocorrelation
would be much slower to appear.

8 W. Feller, Ref. (9). M. Solari and A. Anis, Ref. (19), have shown that the mean of
the actual distribution converges very slowly to the asymptotic distribution. It can
be shown, however, that this slow convergence of the mean is due to the (small)
probability of very large ranges under asymptotic conditions. Actually, the left-hand
tail is a very close approximation to the exact distribution and it is this tail in which
we will be interested.
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calculate the probability that a segment of the series is drawn from a
random walk. If my hypothesis is correct, it should be possible to break
each series up into (a relatively few, long) segments each of which is sig-
nificantly different from a random walk. The results of this test are dis-
cussed below.

I have drawn this hypothesis in fairly abstract terms for the sake
of clarity,® but it is possible to relax many of the assumptions without
substantially altering the conclusions. Instead of breaking investors into
two categories, one almost completely uninformed, the other almost com-
pletely knowledgeable, all I need is that there should be a considerable
gulf in knowledge between the two substantial groups of investors and that
there are relatively few people in the penumbra. I think the principle of
comparative advantage insures this division to the necessary degree.

Similarly, it is not necessary to assume that all professionals
share exactly the same expectations or have the same search costs, so
that the barriers to price change may be soft and rubberlike rather than

9 Statistically, the difference between this hypothesis and the simple random walk
can be stated as follows. The general first-order autoregressive structure is of the
form

Xpoa=a,X, + B+0Y

where Y is a random variable from a normal density function with zero mean and
unit variance. If the process is a random walk, 8 is the mean price change per
period and a, equals unity for all n. This reduces to

Ko =Xg) = B+o¥,

i.e., the changes are distributed normally with mean 8 and standard deviation o.
One possible deviation from randomness might be a,, # 1. In that case

Xpo=Xp=la, - 1)X, + B +0oY

in which case the distribution of the changes would be autocorrelated. If a,> lan
increase in X, would raise the expectation that the next change would also be an in-
crease. If a, < 1, the changes would show negative autocorrelation. My hypothesis
is closer to the argument
an=1—(xn xxno B")e,(e>0),

80 that whenX_ > X, * Bn, a, < 1 a rise is more likely to be followed by 2 fall
and when X | < X + Bn a rise 1s more likely to be followed by a rise. If this were
strictly true a conventxonal attempt to estimate a, as a constant should be expected
to result in an estimate equal to 1, and indicate zero autocorrelation despite sub-
stantial non-randomness.

My hypothesis differs from this one because I do not assume Y, to be a normal
variable for all n. In my formulation Y, would be normally distrlbuted for values
of X, closetoX, + B but would be skew for much larger or smaller values of X,
It is this skewness which accounts for the predicted (and observed) negative cor-
relation.
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rigid. Some professionals will be willing to buy before others, but as the
price falls, the cumulative percentage of professionals willing to sell will
also rise. We can investigate the nature of this phenomenon by construct-
ing a transition matrix of probabilities of rise or decline. That is, once
we detect a trend by use of the distribution of the range, we can construct
a frequency distribution of the price changes conditional upon the price
being a certain distance from the mean of the trend. For example, we can
discover the number of times the price was five weekly standard devia-
tions from the mean of the trend and the frequency distribution of its price
change during the following week.

THE STATISTICAL RESULTS

The statistical results I will present here are based on a sample
of 45 stocks all drawn from the New York Stock Exchange. Of these 45
stocks, 26 were selected by students from a list of 50 major companies
with stock option plans which was drawn up for another purpose; 13 other
stocks were drawn from the steel industry 10 g0 as to cover as wide a
range of sizes of companies as possible; 3 stocks were chosen because a
stock market advisory service had referred to them as offering evidence
of long trends in prices; 3 others were chosen because they exhibited
strong seasonality of sales and earnings. Five of the 45 series covered a
ten-year period; 40 were weekly observations for 5 years; except for one
series, all of the 40 five-year stocks covered the 1956-1960 period.

All of the series were corrected for dividends by adding back all
dividends, both cash and stock. As a result, the means of the price
changes all include the average dividend yield on a weekly basis. Because
earlier investigation had indicated that stock price changes were dis-
tributed more in accord with the log-normal distribution than the normal,
all prices were converted to natural logarithms for the following computa-
tions. After all these computations had been completed it was realized
that the combination of correcting for dividends and g_x_eg'taking logarithms
tends to bias downwards the variability of observations toward the end of
‘the period of observation. It seems unlikely that this effect was large
enough to be of importance but I cannot be sure. Computations are now
under way to verify the results under different methods of computation.
In addition, further work is about to go forward on a random sample of
seventy companies with data covering ten years.

All the tests of the autocorrelation of weekly stock price changes
published so far have consistently shown deviations from random be-
havior, though these deviations have been uniformly small, and there is
some difference in the behavior of British stock price indexes and data

10 One additional steel company, U. S. Steel, was part of the 26-company sample
drawn from the stock option group.
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based on prices of individual American stocks. Kendall's data for twenty-
nine British stock indexes,ll Arnold More's data for thirty -three
American companies 12 and my own data for forty-five other American
companies all indicate autocorrelations which are generally small in mag-
nitude. In each case, however, some are significantly different from zero,
and what is more important is that all tend to have the same sign. In the
American data for individual companies, the one- and two-week price
changes show negative autocorrelation much more frequently than would
be expected from a population which was truly non-autocorrelated. For
the British indexes, the first three weekly price changes exhibit the same
pattern except that the overwhelming proportion are positive. For slightly
longer differencing intervals, Kendall's series revert to the American
pattern, but it is not easy to say whether the differences are due to the
fact that the British data are indexes or whether they are due to such in-
stitutional differences between the markets as the British institution of
settling transactions only every two weeks.

To test this tendency toward excessive reversals, I applied the
mean-square successive-differences test, which is very sensitive to this
kind of non-randomness. Basically, the test is a comparison of the vari-
ance of the difference between successive one-week price changes and
the variance of the price changes themselves. 13 Fourteen of the 45 ser-
ies showed a significant tendency (at the 5% level) toward excessive re-
versals in the one-week price changes and 11 showed the same tendency
in two-week price changes. Only one in the 45 price series showed a sig-
nificant tendency toward positive autocorrelation at that differencing in-
terval (Table II).

At the fourteen-week interval, the situation was almost reversed.
Nine of the 45 series now showed a significant tendency for price changes
to follow one another (at the 5% level) and thirty-five of the 45 series
showed at least some tendency toward positive autocorrelation. The odds
are more than 100 to one against such a preponderance of trends occur-
ring if there were no such tendency in the population. Furthermore, the
shift from an excessive tendency for reversals to an excessive tendency
for trends takes place relatively uniformly as the interval increases.

1 M. Kendall.

12 A. Moore, unpublished Ph.D. thesis, University of Chicago.

n-1 2
Z(xi«ﬂ —xi)
i=

13 The statistic used is 1 — E, where E =

2 2

9y

and where the X; are the price changes. If the changes are independent, E should
equal 2. The statistic is distributed normally with mean zero and standard devia-
tion n—-2  SeeC. A. Bennett and N. L. Franklin, Ref. (3).

(n~1)(n+1)
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TABLE I TABLE IIT
MEAN-SQUARE SUCCESSIVE
DIFFERENCE TEST KURTOSIS
E
1-3
One-week Fourteen-week One-week Fourteen-week
changes changes changes changes

1 -0.276* ~0.171 1 11.30 2.99

2 -0.027 0.116 2 3.19 1.50%+
3 0.019 0.070 3 3.15 1.56%*
4 0.007 0.214 4 4.43 1.81%*
5 0.005 0.155 5 3.20 1.96*=
6 0.091*»+ 0.172 6 3.39 1.61%*
7 0.188* 0.256 7 3.04 1.99%»
8 ~0.086%** ~0.236 8 6.45 1.81%*
9 ~0.108*%* 0.068 9 3.63 3.50
10 0.015 0.071 10 3.08 2.07*
11 0.033 0.390** 11 3.32 1.90%*
12 -0.170* -0.613* 12 3.46 2.04*
13 ~0.086%** 0.065 13 3.73 3.34
14 -0.026 -0.179 14 3.10 2.18+
15 0.051 0.384** 15 3.27 1.99*=
16 0.021 -0.243 16 3.55 1.78%=
17 —0.080*** 0.051 17 4.54 1.86**
18 -0.071 -0.010 18 4.43 1.56%*
19 0.043 0.403** 19 3.28 1.96*+
20 -0.040 -0.316 20 3.43 2.48
21 0.038 0.373%* 217 3.42 2.22+
22 -0.077 0.289 22 3.73 2.76
23 -0.333 0.180 23 21.34 2.34*
24 0.032 0.490* 24 4.13 2.41
25 -0.084 0.220 25| 3 3.11 3.41
26 -0.233 0.496+% 26 §, 5.65 2.21*
27 -0.084 0.346** 27 & 3.17 2.10*
28 0.013 0.025 28( 8 2.95 2.59
29 -0.162* 0.328 2913 15.01 1.85%»
30 0.010 0.068 30 g 3.30 2.28*
31 -0.337* 0.236 31 4.75 2.63
32 0.039 0.187 32 3.09 2.29*
33 0.037 0.116 33 3.21 2.45
34 0.038 0.428** 34 ) 3.11 2.70
35 0.011 0.177 35 2.98 2.00+
36 0.076 0.254 36 5.89 1.46%*
37 0.061 0.145 37 3.83 2.02*
38 -0.112%* 0.215 38 5.71 3.70
39 -0.092 -0.035 39 4.11 2.25%
40 -0.125* ~0.410** 40 16.11 2.35+
41 0.076 0.440%* 41 3.45 2.05*
42 -0.131* 0.325%** 42 10.45 1.80**
43 0.011 0.111 43 5.31 2.39
44 -0.137* 0.176 44 5.30 3.08
45 -0.154* 0.072 45 3.10 2.18*

*
*%

Significant at 1% level
Significant at 5% level

*** Significant at 10% level

** Values under 2.00

*

Values less than 2.36 but greater

than 2.00




As several writers have already noted, the distribution of price
changes in speculative markets tends to be significantly leptokurtic. The
data of my sample bear this out. Of the 45 price series tested (Table III)
only two had a kurtosis less than 3 - which is the kurtosis of a normal
distribution - and those two values were 2.95 and 2.98. The average
kurtosis was 4.90, with three values greater than 10 and fifteen others
between 4 and 10. If the successive changes were independent, we would
expect that price changes over longer intervals would more closely ap-
proach the average kurtosis of a normal distribution. In fact, however,
the kurtosis decreases so rapidly that it very soon falls below that of a
normal distribution. At the fourteen-week interval only fourteen of the
45 series have a kurtosis greater than 2.363 which is the expected kurtosis
of the small samples I have had to use. Sixteen of the series show a
kurtosis less than 2.0.14

A complete analysis of the data on the basis of the range of a
random walk15 has not yet been possible because of certain conceptual
problems. Only two companies have a trend which is significant over the
entire period of observation at the §% level. But in most cases this is be-
cause of several long segments each of which is in itself very unlikely to
have come from a random sample. For example, the price of National
Dairy Products in the 300 weeks beginning in January, 1950, moved in a
range which was significantly too small to be random at less than the 1%

4 The expected kurtosis of a sample from the normal distribution is 3(%—%) ,

where n is the sample size. In the computations in this paper, we computed EL: in-

- 1) 2
(n - D" times the indicated value.

1

4
stead of 93: ,and as a result the expected value is
]
For the fourteen-week kurtosis figures, n = 17. M. Kendall, Ref. (12).

It is particularly interesting to note the way that the fourteen steel companies stand
out in the sample in a negative way. Only 7 out of those 14 have a lower kurtosis
than the random hypothesis would suggest. The sample of steel companies is much
more cyclical in its behavior than the other stocks in the sample; and, as we would
expect, if a series were composed of a large number of different "trends,” the re-
sultant kurtosis would be more like that of a normaldistribution. As I indicate below,
the more sensitive "range test" for trends, suggests this is the case.

5 Feller, op.cit. Feller finds two asymptotic distributions for the range: one which
is appropriate if the mean of the random walk is known, another if it is unknown. The
latter has the smaller sampling variance, and is the one used. In that procedure, the
range is computed around the trend line found by using the observed mean price
change to be the true mean. The distribution is skewed and was computed especially
for this purpose. A smaller distribution for the maximum deviation is derived in
Doob, Ref. (7).

The distributions derived by Feller depend upon the population standard deviation.
I have derived the related distributions which use the sample standard deviation in
the statistic and which are independent of the population statistics. A paperderiving,
and computing these distributions will be published separately.
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TABLE IV
AVERAGE KURTOSIS

Number of weeks
over which Expected Average
differences value (including No. 35)
are taken
1 2.96 4.90
2 2.91 3.63
3 2.86 3.15
4 2.81 3.47
5 2.7 3.04
6 2.73 2.56
7 2.69 2.60
8 2.65 2.30
9 2.61 2.46
10 2.57 2.53
11 2.52 2.40
12 2.47 2.36
13 2.43 2.16
14 2.36 2.26

This calculation includes all stocks for a five-year period.
For all companies except No. 35 {Continental Oil) the 5-year
period is 1956-60. For Conoco, it is 1951-55,

level. Furthermore,from that time to the end of 1960 (209 weeks) it moved
within a range around another trend which was similarly too small to be
random. International Telephone and Telegraph has successive consecu-
tive intervals (i.e., each begins where the prior one left off) of 100, 50,
125, 100, and 60, all of which are significant at the 1% level (only the first
sixty weeks out of a 530-week period of observation fail to show any such
significant trends.) The entire 1. T. and T. series would be significantly
non-random at the 12% level. General Foods shows two consecutive
trends, each of which covers half of a five-year period of observation.
National Biscuit, Continental Qil, Procter and Gamble, and Coca Cola all
behave similarly. That is, each of these companies has only one or two
trends covering all of the periods studied. Each of the forty-five com-
panies studied has at least one trend of more than a year in length and
most have at least one longer trend and very few long stretches without a
trend. The more stable investment grade companies tend to have only two
or three consecutive, non-overlapping trends covering all of a five- or
ten-year period. The more "cyclical" companies like the steels can
similarly be broken down into consecutive, non-overlapping trends, but
these "trends" tend to be shorter and are sometimes separated by short
intervals which do not fit into any "trend."”
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The conceptual problem is one of significance. Almost any series
of any length has some segment which is unusual in some way. If the seg-
ments are not chosen at random, the significance of finding them is not at
all clear. On the other hand, the longer (and fewer) the segments, the
more significant each must be and this conclusion is strengthened if we
require that the trends be consecutive, i.e., that the next one start where
the last one ended. It would seem as if the lengths of the trends involved
in the price series studied, especially in conjunction with the other evi-
dence presented, are significant indications of non-randomness, but the
analysis in this direction has much further to go.

Although my relatively limited investigations into commodity price
behavior along these lines suggest a much closer approach to randomness,
I should also point out that these results seem largely compatible with the
results of Arnold Larsen's more extensive investigations into those mar-
kets. Larsen finds a tendency for shocks to be followed by reversals over
short periods of time and then by weak trend effects over longer periods.
His path of research, using somewhat different methods developed in col-
laboration with Holbrook Working, shows great promise for research in
this area.

It should also be noted that evidence of trends presented here is
quite compatible with a similar kind of evidence presented by Sidney
Alexander and Hendrick Houthakker. These researchers found little evi-
dence of useful short-run autocorrelations, but did find strategies which
suggested that stock and commodity prices did move in trends.

Both Alexander and Houthakker attacked the problem this way. If
it is true that stock prices are a random walk, there is no strategy which
will, in fact, make money. If there is such a strategy price changes can-
not be random. Houthakker's strategy (used on commodity futures) was:
buy a security and hold it for a fixed period with a stop-loss order x% be-
low the market. Alexander's related but more complicated strategy was:
select a stock and watch it. If it goes up x%, buy it and hold on to it until
it falls x% from a subsequent high in which case sell the stock you ownand
go short an equivalent amount. Stay short until it rises x% from a subse-
quent low. In this case the x% is conceived of as a filter for small, "un-
important,” price changes.

Houthakker tested his rule against the behavior of actual com-
modity futures prices. Alexander tested his rule against movements in
the Dow-Jones and Standard and Poor's indexes. Unfortunately, Alex-
ander's rule is not nearly as effective when used on individual common
stocks. Used with the indexes, gains in excess of simple strategies are
achieved with "filters” as small as 5% even after allowing for commis-
sions. For individual stocks, the filter has to be of the order of 26%. For
a random sample of seventy-six stocks from the New York Stock Exchange
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in the period 1950-1959, gross gains (omitting commission charges) ran
about 50% of that which could be achieved from a simple investment strat-
egy.16 This is, of course, an unfavorable period for testing any alternative
to simple buying and holding, but these results are quite dismal, and indeed
are intrinsically so. With a filter of 25%, declines must be very sharp in-
deed to permit profits on short sales.17 Since a gain of 26% of the price
of the stock must be sacrificed on a long position if the price indeed rises,
substantial profits on short positions are essential if the filter technique
is to be superior to simple investment. Clearly only periods including
very substantial market declines would make this possible.

On the other hand, it is easy to improve upon Alexander's original
and imaginative beginnings, if a model like mine proves to be true. Alex-
ander's rule requires that the company's stock prices actually fall sub-
stantially before the stock can be sold. A rule based on a fall relative to
some trend would permit much more rapid response to changes of direc-
‘tion. One such procedure involving the use of the probability of the range
of fluctuation around the trend seems extremely promising. This involves
buying (selling) the stock when its recent behavior has a low probability of
arising from a random walk and selling (buying) it when that probability
rises above a previously specified level. This particular strategy is very
difficult to implement computationally, but short-cuts are being developed
and may soon prove feasible. It has the advantage of being conceptually
similar to the methods actually suggested by stock market "technicians”
and thus is a fairer test of their hypotheses. From a practical point of
view, it would have several advantages over the "filter" rule. First, it
would enable a follower to sell (buy).a stock when it stopped rising (falling)
along the previously defined trend, rather than waiting for a substantial
reversal. Second, it would permit an investor the altermative of holding
cash rather than adopting a position in either direction - as the filter rule
(though not Houthakker's stop-l08s) requires.

16 Allen Shiner, "An Analysis of Price Movements in the Stock Market by the Filter
Technique,” unpublished Bachelor's thesis, M.I.T., 1962.

Actually, Shiner's results are not a literal reproduction of the Alexander hypothesis,
since Shiner uses only weekly closing prices to establish highs and lows. The intra-
week highs and lows would have to be more extreme, but there is no a priori way to
measure the bias, since errors in both directions are possible. However, they are
very unlikely to be important enough to affect these results.

As in Alexander’s original paper, the gains referred to are geometric gains: i.e.,
they assume pyramiding of all profits.

17 Actually, for large filters Alexander uses "logarithmic filters” rather than per-
centages; i.e., the percentage difference from the high (low) is always measured on
the low price. Thus, with a "25% filter," the price need only fall 36% to enable a
short sale to make money. The short sale would take place when the price dropped
to 80% of the previous high. If the price fell to 64% of the high, a repurchase would
be effected when the price rose to 125% of the lower price.
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While the rule I have suggested is difficult to implement, there are
other simpler rules which also possess the properties I have described.
One such simple decision rule is a modification of a rule actually sug-
gested by some investment services. The rule is usually stated as fol-
lows: Compare the price today with an average of the price in the last
200 days. If the current price is higher than the moving average, buy the
stock; if it is less than the moving average, sell short. If the current
price rises above the moving average, cover short positions. If the price
falls below the moving average, eliminate long positions.

Since the data in this study are weekly closing prices, I substituted
a forty-week average for the suggested 200-day average,and compared the
result of this strategy with the results of buying each stock onthe 40th ob-
served week, 18 3na holding it to the end of the period of observation. The
indicated strategy is much superior to simple buying and holding if only
gross profits are considered. While this is strongly suggestive of non-
randomness, it is not necessarily indicative of a non-randomness notice-
able enough to lead to a remunerative strategy, since the moving average
procedures lead to muchmore frequent trading than simple investment. In
fact, after allowing for commissions, the moving average strategy is much
inferior.

Most of the excessive transactions occur when the actual stock
price remains in a narrow range. As a crude rule-of-thumb to reduce the
number of transactions, the decision rule was modified to allow for trans-
actions only when the moving average and the current price diverged by
more than a certain percentage. Under this new strategy, the stock was
to be bought only when the price rose above the moving average by more
than 5% and would be sold whenever the price fell below the moving aver-
age by any amount: short sales would only be undertaken when the moving
average rose above the price by more than 5% but would be covered when-
ever the price moves above the moving average by any amount. The re-
sults (Table V) show that the gross gain from this strategy is 17% greater
than simple investment but the net gain is still smaller. More important,
however, is the fact the average ‘net weekly gain is substantially higher for
several alternative strategies. This is because the 5% rule now leaves the
investor free to divert his funds to other uses whenever the stock price
shows no particular trend. For example, the net weekly gain from the
moving average strategy is 9.5% greater than from simple investment.

18 This is the appropriate comparison for this strategy since, unlike the filter, this

moving average rule can be implemented at any point of time by simple reference to
the past 40 weeks of observed data. That is, no lag from the commencement of the
application of the rule is necessary.

All comparisons indicated here are between sums of the logarithms of the price
changes: i.e., we refer to geometric (or pyramiding) profits. These are necessarily
smaller than the corresponding arithmetic sums.
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TABLE V
RESULTS OF MOVING AVERAGE

DECISION RULE!
5% THRESHOLD

Average return Average return

Average return per stock Average
per stock l; l; ::::: per week transactions
%) %) %) per stock
(annualized)
Gross Net Gross Net Gross Net
Buy and hold 63 60 0.19 0.18 10 10 2
Moving average strategy
(long and short) 79 54 0.26 0.20 14 11 15.2
Moving average strategy | g 56 | 038 | 032 | 22 18 8.0
(long) ) ) J

ZERO THRESHOLD

Average return Average return

Average return per stock Average
per stock ‘;, ee: :t::: per week transactions
(%) @ (% per stock
(annualized)
Gross Net Gross Net Gross Net
Buy and hold 63 60 0.19 0.18 10 10 2
Moving average strategy
(long and short) 74 32 0.22 0.11 12 6 82.8
Moving average strategy |  gq 48 | 033 | 025 | 19 14 40.6
(long only)

All profits figures are geometric means: averages of the logarithms of profits reconverted to
arithmetic values. Net profits are computed by assuming 1% commissions per transaction.

! The Decision Rule is as follows: buy the stock when the price exceeds a 40-week moving
average by more than the threshold amount and sell the stock whenever the price dips below
the moving average by any amount. Sell the stock short whenever it falls below the moving
average by more than the threshold amount and cover the short sale whenever the price rises
above the moving average by any amount.

2 Same rule as in footnote (1), except that only long positions are included.

The weekly gain from the moving average strategy ignoring the short
positions is 76% greater. In addition, the risk-averting speculator may be
attracted by the fact that the variance of these strategies is some 30%less
than a simple investment alternative.

The significance of these calculations is not altogether clear. If
individual stock prices were independent of one another, they would indi-
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cate very worthwhile advantages for non-random strategies. If, as is true,
individual stock prices are not independent, the attractiveness of these
particular strategies depends upon the alternative uses of the funds when
they are not employed in common stock investment. On the other hand,
these strategies are hardly exhaustive and, indeed, we have indicated some
that look more promising. In addition to tests based on the range, we have
not investigated moving averages of varying lengths or rules involving
different thresholds. Furthermore, the period of investigation has been
one which has been peculiarly satisfactory for simple investment policies,

Figure 1

1IBM
Transition Matrix
Weekly, January, 1950, to March, 1952
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The standard deviation is 0.0268, which means each class is about
1.4% wide.

The classes are numbered starting from the minimum deviation, so
the topmost row is the lowest price class and the lowest row contains
the maximum.

The outlying points are the aftermath of the Korean War outbreak.
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and the sample of stocks chosen is one in which the markets are much
more likely to be perfect than would be the case if smaller companies
were involved.

Finally, I turn to a study of the transition matrices of price
changes within the trends.

For some of the periods marked off by the trends I have detected,
1 have computed transition matrices for the price changes. Some of these
are indicated in Figures 1 through 4. The N rows of the matrix represent
N classes of prices, each of which is equal in width to ﬁth of the range of
the series around a trend line computed from a least-squares time trend.
The minimum of the deviations from the trend is in the uppermost row;
the maximum is in the lowest row. The columns are identically defined,
with the lowest price class on the left and the highest on the right. The
transitions are from the class denoted by row to the one denoted by the
column. The diagonal entries represent movement within the same class.
The entries to the right of the diagonal represent price rises. The entries
to the left, price declines.

Figure 2

IBM
Transition Matrix
Weekly, March, 1952, to December, 1960
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Each class is about 1.6% wide
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Weekly, January, 1950, to January, 1959

Figure 3

I.T.and T.
Transition Matrix

- = - m— . = - - —
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4 3941 + 0.30
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2 6 5164 | ! +0.15
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S.D. = 0.0288

Each class is about 2.3% wide

The matrices shown are typical of all those computed. There is
apparently a mild tendency, especially near the maximum and minimum,
for price changes to move toward the mean. This is shown by the right-
hand marginal totals. There is no clear similar tendency as far as the
direction from which a class is entered. The lower marginal totals indi-
cate the average move into a given class. If the random walk hypothesis
were correct, there would be the same (zero) expectation of price change
in each row and each column.

The Houthakker-Alexander approaches, as well as my own tests
based on the range of moving averages, all suffer from lack of a good
statistical test of significance; on the other hand, they come closer to
testing for the kind of non-randomness which stock market traders claim
exists. It is a foolish sort of statistical reasoning which would suggest we
limit our investigations to those hypotheses which are easy to investigate .
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Figure 4

NATIONAL DAIRY PRODUCTS
Transition Matrix
Weekly, January, 1950, to October, 1955
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Each class is about 1.4% wide

The way in which actual markets operate is one of the more fascinating of
current economic questions. If their behavior is more complicated than
the random walk models suggest, it will take more sophisticated statistical
testing to discover it.
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