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RANDOM WALKS, MARTINGALES AND THE OTC
RoBERT L. HAGERMAN AND RICHARD D. RICHMOND*

I. INTRODUCTION

SECURITY price movements have been characterized by the “random walk”
hypothesis. Basically, this hypothesis states that changes in a security’s price
are independent over time. If this hypothesis is correct, it implies that no
trading rule based on past prices will earn an economic profit. Because many
investors do use trading rules, tests of the random walk hypothesis are of
considerable practical, as well as academic, interest.

The independence implication of the “random walk” hypothesis has been
tested in several studies of securities traded on organized markets.! The evi-
dence overwhelmingly shows that security returns are independent over time.
The purpose of this paper is to extend the investigation to securities traded
over-the-counter.

The motivation for doing this is that the OTC market is considerably dif-
ferent from the organized markets, such as the N.Y.S.E., so the results of
previous studies may not hold for this market. The OTC differs from organized
exchanges since it is composed of geographically dispersed firms which act as
principals in security transactions with investors by buying and selling from
inventory. Since many investors use past prices to make investment decisions
in this market, it is of interest to determine if there is empirical evidence that
such strategies will be profitable.

To test this possibility, we examined the monthly returns of 253 securities
for serial independence. Serial correlation coefficients were computed for each
security and tested for significance assuming both normal and non-normal
symmetric stable underlying distributions. In addition, a distribution-free runs
test was used to test the returns for serial independence. The results indicate
that price changes are serially independent which is consistent with the “ran-
dom walk” hypothesis.

II. RanpoM WALKS AND MARTINGALES

The primary reason for the interest in the “random walk” hypothesis is its
relation to the concept of an efficient market. In an efficient market, the cur-
rent price of a security is an unbiased estimator of its intrinsic value which
means that information, relevant to the value of the security, is reflected in
the current price. A necessary condition for efficiency then is that the infor-
mation contained in past security price movements be reflected in the current
price of the security.

* Duke University and the University of Rochester, respectively. We are grateful to J. Long, D.
Mayers and M. Rao and especially Michael C. Jensen, Eugene F. Fama and Richard Roll for
guidance and to George Benston for the data.

1. Cootner [1] has compiled the major earlier studies. Fama [4] and Smidt [12] provide excellent
summaries of the issues and the evidence.
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The simplest formation of an empirically testable efficient market model is
the “fair game” model which for a weak form of an efficient market can be
expressed as:

E(Pt-f--rIPt; Pt—l; Pt—2, ceey Pt~n) = E(Pt+T|Pt). (1)

This is a weak form of the “fair game” model in the sense that the information
set under consideration is limited to the set of past prices. The submartingale
and random walk models frequently discussed in the literature are successive
subsets of the fair game model.

The random walk model which assumes that successive returns are indepen-
dent and identically distributed imposes the strongest conditions for tests of a
weakly efficient market. In other words, the random walk model is a sufficient
but not necessary condition for an efficient market. The tests which follow are
“random walk” tests of the form found in the earlier literature but are not
complete tests of the random walk hypothesis since they only examine returns
for serial independence.?

ITII. Tuae Data

The data are monthly bid prices of 253 securities from January 31, 1963
to December 31, 1967. These prices were obtained from the National Quota-
tion Service’s National Monthly Stock Summary. Capital changes and divi-
dends for these securities were taken from Moody’s Dividend Record. The
securities in the sample were selected at random from those firms traded over-
the-counter that had more than 500 shareholders and assets in excess of one
million dollars. Initially 387 securities were selected but incomplete data re-
duced this number to 253. Potential errors in the data were identified as month-
to-month price changes of greater than 15% and as bid prices less than 95%
of the related asked price. The prices, dividends and capital changes asso-
ciated with the potential errors were traced to independent sources such as
Barron’s and the data corrected if necessary. From the 14,927 observations,
approximately 2300 potential errors were identified of which only 85 needed
corrections.

IV. Tests oF SERIAL CORRELATION

The serial correlation coefficient is a popular statistic for determining the
amount of serial dependence. This statistic is defined as:

__ Covariance (Us, Ui—y)
=TT 50y - 6(Uey)

(2)

which can be approximated by:
Covariance (U, Uy—q)
p=~ - (2a)
Variance (Uy)

where U, is a log price relative.® A log price relative is:

2. See Fama [4] for a comprehensive discussion of the issues in this section.

3. The log price relative is used in this study because it approximates the one period return and
eliminates the skewness in price distributions which result because prices are bounded at zero.
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P¥e_y

Ui=In ( (3)

where:

P, is the price of the security at time t.

D, is the dividend paid between t — 1 and t.

P*¢_; is the price of the security at t — 1 adjusted for capital changes between
t— 1 and t.

For large samples the estimate of the serial correlation coefficient is equal
to the estimate of the slope coefficient in the regression model:

Uj e =05 4 B3Uje + €041 (4)

where Uj; is the log price relative of the j’th security at time t. In the model,
B; is the effect of the return from t — 1 to t on the return from t to t + 1.
o; is the average continuously compounded monthly return on security j if B;
is zero which is implied by serial independence.

Regressions in the form of equation (4) were computed for all 253 com-
panies for the entire 60 months, the first 30 months and the second 30 months.
A summary of the results is given in Table 1. A frequency distribution of the
correlation coefficients is presented in Table 2.

TABLE 1
SUMMARY OF RESULTS FROM ORDINARY LEAST SQUARE REGRESSIONS
First Second
Full Half Half
Period Period Period
Mean Absolute Value of Sample
Serial Correlation Coefficient 0.1308 0.1735 0.1590
Mean Sample Serial Correlation
Coefficient —0.0762 —.0994 —.0737
Standard Error of Mean .1483 .1893 .1885

Number of Sample Serial Correlation
Coefficients Significant at 5%

Positive 2 2 3
Negative 29 21 19
Total 31 23 22

Number of Sample Serial Correlation
Coefficients Significant at 1%

Positive 0 0 1
Negative 15 6 6
Total 15 6 7

For the entire period, 31 serial correlation coefficients, 12.3% of the total,
were significant at the 5% level under normality assumptions. For the first
30 month subperiod and for the second 30 month subperiod, 23 and 22 co-
efficients were significant at the 5% level. At the 1% level of significance 15
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TABLE 2
FREQUENCY DISTRIBUTION OF SERIAL CORRELATION COEFFICIENTS

First Second
Full Half Half

Class Period Period Period
40to .50 0 2 2
30to 40 2 2 6
.20to .30 6 13 10
10to .20 18 22 24
.00to .10 52 38 44
—.10to .00 69 51 57
—.20to —.10 54 49 45
—.30to —.20 31 40 38
—.40 to —.30 18 19 14
—.50 to —.40 3 13 - 10
—.60to —.50 0 4 2
—.70 to —.60 0 0 1
253 253 253

coefficients were significant in the full period sample, 6 in the first subperiod
and 7 in the second subperiod. Each of these numbers of significant coefficients
is different at the 5% level from the number expected under the null hypoth-
esis, i.e., using the binomial distribution, the probability of occurrence of each
of the above outcomes is less than .05 if the null hypothesis is true.

These results indicate the existence of serial dependence of price changes
for securities traded OTC. However, even though the number of significant
coefficients is statistically different from the expected number, this dependence
is not stable. No security had significant dependence in both subperiods and
less than half of the securities with significant dependence during the full
period had significantly dependence in either subperiod.* This lack of stable
dependence greatly increases the likelihood that the results are unreliable, so
possible causes of spurious correlation and bias must be examined.

One possible cause of misleading results is bias in the coefficients due to
errors in the variables. We may examine the errors in variables problem in the
following manner. Take as the measured value of the log price relative,

Uy =In(P¥; - k't) —In(P*_y - ki) (5)
= U* 4+ Ink;—Inke;
=U*+ Cy— Ci—1,
where C, = 1n k,, k, is the error in measured price expressed as a multiplica-
tive factor of the true price P*,, primes denote adjustments for dividends and

P,_, is adjusted for capital changes. U*, is the true value of the log price
relative at time t. The serial correlation model is,

Ukgypr = a+ BU* 4 Eeqa (6)
Et+1 ~ N(07 02)’

4, Of the 31 securities with coefficients significant for the full period, only 8 and 15 had signifi-
cant coefficients in the first and second subperiods, respectively.
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which can be expressed in deviation form as,
w¥epq = fuX 4 Eepa (7)
The estimate of the serial correlation coefficient is

Sugaue

b= ®)
but
U1 =uw¥qg + e — e
and
Uy = uwk 4 ¢t — Cpg
so that
b Zueprue  B(W¥epr + Sepr — co) (W4 ¢ — coq) (9)
Su S(uk + e — cp—q)?

Then, assuming that the errors are independent of the log price relatives and
assuming

E(ct) = E(ct) =0 forall t
E(cttice+x) = E(CetiCetx) = E(¢t45Ct11) =0 forj~k
and E(c?) =02 ~ E(c; * 't) ~ E(cy - ¢y)
we have
plim B = plim B(wkeqq * kg — g C't) (10)
-0 -0 (¥ 4 2 4 copq2)
. cov(u*eyqu*) — o
ous? 4 20,2

This means that to the extent errors in the data exist, the serial correlation
coefficient will be biased.

We may obtain an upper limit on the size of the induced coefficient due to
errors in variables by assuming that cov(u*,,,u*,) and o2, are equal to zero.
Then the expression in equation (10) assumes the value —15. Of course, the
value of o®,. will not be zero so that the value of the expression will be much
closer to zero.® Unfortunately, little additional information about possible bias

5. An alternative formulation of @ in terms of B, under the same assumptions, can be shown to

yield
20,2 c,2
plim f ~ B (1_ e ) __c

n— 2 2
® Oy Oy

. . . . . S
which shows that there are two elements of bias due to errors. The first is a bias which pushes f
toward zero as 20,2 approaches 6,2 and then beyond zero, reversing the sign of a, as 20,2 exceeds

6.2
6,2. The second is a negative bias due to the term —

.
Oy
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can be directly deduced with some measure of the size of o%, ¢%. and o2,
Of course, these are not known.

The magnitude of the bias due to errors, if it exists, is likely to be small.
The existence of a sizable bias is dependent upon having ¢ a large fraction
of o®,.. This requires that there be at least a few large errors or many small
errors in the price series. Neither possibility is very likely. Large errors were
eliminated by the initial data screening. Many small errors might be possible
due to inaccurate reporting or printing in the National Quotation Service re-
ports. Errors of this type are unlikely, however, because we used the median
bid prices and most securities in the sample had multiple dealer listings.

A second apparent source of difficulty is the non-fixed regressor problem.
The independent variable Uy, in equation (4) is a random variable rather than
a fixed variable as in the usual linear regression model. This introduces a finite
sample bias in the estimate of § so that, when the true value of B is zero, the

to the first order of approximation.® This ef-

expected value of Bis—
n—1

fect, then, can be expected to introduce a small negative bias into the tabu-

lated results.

A third statistical problem is the effect of the market factor. It is well docu-
mented that security prices move together so there will be a tendency for
individual security returns to move with the “market” return.” The predomi-
nance of serial correlation coefficients with negative signs may be caused partly
or wholly by this market factor effect.

The existence of a common element in a sample of security returns, of course,
invalidates the assumption that the estimated serial correlation coefficients are
independent. Therefore, the result using the binomial distribution to test
whether the actual number of serial correlation coefficients is significantly
different from the expected number loses the impact of the interpretation that
there is significant statistical dependence in individual security returns. How-
ever, comparing the sample mean serial correlation coefficient in each period
with its standard errors shows the mean always less than its standard error
so the mean is not significantly different from zero. This uncertainty plus the
interaction of the other statistical problems make interpretation of sample
serial correlation coefficients extremely difficult. '

A fourth, possibly significant, source of error is the assumption of normality
in tests of significance of the regression coefficients. There is considerable evi-
dence supporting the theory that the distribution underlying price changes is a
symmetric stable distribution with characteristic exponent less than two rather
than a normal distribution.® Although most of this evidence is derived from
studies of organized exchanges, it is likely to be applicable to price changes
for OTC securities.

6. For a discussion of the autoregressive non-fixed variable problem see Johnston [7, pp. 211-215].
The approximation of the bias follows from the derivation in a note by Kendall [8].

7. King [9] presents evidence on this point and Fama [3, pp. 73-74] provides a full discussion of
this issue.

8. See for example Fama [3], and Roll [11].
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The family of symmetric stable distributions is defined by the log character-
istic function

In ¢x(k) :1n[f: eikxdF(x)] = idk — y[k|e, (11)

where k is a real number, and by the three parameters: a, the characteristic
exponent, 8, the location parameter, and v, the dispersion parameter. Sym-
metric stable distributions have two important properties: (1) they exhibit
stability or invariance under addition and (2) they are the limiting distribu-
tions for sums of independent, identically distributed random variables so that
the class of symmetric stable distributions generalize the central limit theorem.
If o, the characteristic exponent, equals two, the distribution is normal; if a is
less than two the second and higher moments do not exist.?

The behavior of the F statistic, therefore, is not defined when the distribu-
tion has a characteristic exponent less than two, so significance tests based on
this statistic would be inappropriate. Thus a different statistic is required to
provide evidence on possible serial dependence.

The approach taken was to apply a significance test for the ordinary least
squares regression results assuming the underlying distribution is symmetric
stable with characteristic exponent, «, less than two.® Since the form of the
density function for symmetric stable variables is not known except in special
cases (Cauchy distribution, @ = 1, and normal distribution, o = 2), there is no
established body of statistical procedures for hypothesis testing when the dis-
tribution is of this form. However, Fama and Roll have constructed a table
of cumulative distribution functions for standardized symmetric stable distri-
butions based on approximate densities. Since the ordinary least squares esti-
mate of the correlations coefficient is a linear function of log price relatives,
a standardized variable for the estimate of the coefficient can be constructed
and compared with the Fama-Roll table in order to make probability state-
ments or tests of significance about the estimates.

The value of the characteristic exponent, a, was not known in this case and
the data were insufficient to construct estimates with any degree of validity.
Therefore, the test was conducted with assumed values of o from 1.1 through
2.0 in increments of 0.1.

The test was constructed as follows: From the ordinary least squares regres-
sion we have the estimate of the serial correlation coefficient,

A 2u; . Ut
ﬁ_—W—_ (12)

Sue(But + €c41)
- Euﬁ
Eum.,_l

=6+——2—1;:2——.

9. A detailed treatment may be found in Feller [6]1, Fama [2] or Mandelbrot [10].

10. The ideas and tests developed here are either taken directly from or are extensions of the
work of Fama and Roll [5].
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If we assume that the &’s are independent, identically distributed with log
characteristic function,

In ge(k) =In| J . e““dF(e)]
=1i-3(9) “k—v(e) - [k (13)
where i =\/—1, k is a real number, F () is the cumulative distribution func-
tion, a is the characteristic exponent, d is the location parameter and c is the

scale parameter (Y = c*), and with 3(¢) = o, then Bis symmetric stable with
log characteristic function

In ¢p(k) =i-3B) - k —y(B) - [k|° (14)
where
2 ¢ €t
0 =] B e ] (15)
Ut
_ Sug * 8(et+1)
=B+ —Sw
= pu
and
A E t ° €
vB) = v B e ] (16)
U¢
A
= v(e) S
ug [*
= [c(e)]e - b Suz A2

For our test, the null hypothesis is f = 0 and the alternate hypothesis is f# 7 0.
The estimate of the serial correlation coefficient, 3, is provided by the ordinary
least squares regression analysis. The estimate of the dispersion parameter is

e = rPB)ve

[ u a]l/a
= 90 - Zg

sy [T
_e(G) Tﬁ'

c(e) is estimated from the measured residuals as

&(e) = [€(.72) —2(.28)] (18)

1.654

11, See Footnote 12.
12. This is correct only if u, is a fixed variable. The nonfixed regressor problem, to be discussed
later, makes the terms rather complex.
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where £(.72) and £(.28) represent the .72 and .28 fractile measured residuals.
This method for estimating c(£) was suggested by Fama and Roll [5] since
a range estimate avoids the second moment and the specified fractiles mini-
mize the potential bias in the estimates caused by the unknown value of o.
From the estimates of f and c(B) we have a standardized variable,
zZ= B8 {— p under the null hypothesis, § = 0} (19)
e® Ued ’

for each assumed value of a. The test applied to the standardized variable,
Z= é(ﬁ) is entirely analogous to the test of significance when a normal

distribution is assumed. The computed values of Z were compared to the
values of Z for the appropriate o value at .975 of the cumulative distribution
functions as tabulated by Fama and Roll for a two-tailed test of significance
at the 5% level. Since we have an estimate of the dispersion parameter, we
used the Fama-Roll tabulated distribution on the basis of a large sample
(n=159) as the cumulative Normal distribution would be used for the t-
distribution with a sample of this size.

The number of coefficients, total, positive and negative, significant at the
5% level for each assumed value of o, is given in Table 3. The table shows,
as expected, that the number of significant coefficients declined with a. Ap-
proximately 5% of the 253 coefficients are significant at the 5% level when
o = 1.6. The results indicate that, if a is in the range of 1.7 to 1.9, the range
indicated by the work of Fama [3] for listed securities, then the data provide
weak support for the existence of dependence. If a is less than 1.7, then the
existence of dependence is ruled out.

The results when a is assumed to be 2.0 are quite interesting. The number
of coefficients significant at the 5% level is 61, while under the assumption of
normality, 31 coefficients are significant at 5%. When the true value of a is

two, the number significant under the two approaches should be the same
2 2

c o
since y =c? = 5 When o is actually less than two, then ¢ < Y since the

sample variance gives more weight to the tails of the distribution which reflect
greater dispersion. Therefore, when o < 2.0 more coefficients will be found
significant by the symmetric stable test for o assumed equal to 2.0 than under
the F test which assumes normality. This result, then, is consistent with the hy-
pothesis that the underlying distribution is non-normal.

As mentioned above, however, these results are based on the incorrect as-
sumption that the lagged independent variable U, is fixed. When the assumption
of fixed regressors is relaxed, the esimates are no longer simple linear com-
binations of U,. Since we have no estimators of the location and scale param-
eters in this case other than approximations derived from the"fixed regressor
case, it is not possible to determine precise estimates nor to evaluate those
obtained assuming a fixed independent variable.

The results based on serial correlation coefficients to determine independence
are mixed. There is some evidence that the security returns in the OTC are
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TABLE 3
NUMBER AND PERCENTAGE OF COEFFICIENTS SIGNIFICANT AT 5%
UNDER THE ASSUMPTION OF A SYMMETRIC STABLE DISTRIBUTION

. Number Significant at 5%
Characteristic

Expanent Total Positive Negative
1.1 0 0 0
1.2 0 0 0
1.3 1 0 1
1.4 1 0 1
1.5 2 0 2
1.6 12 2 10
1.7 18 3 15
1.8 27% 5 22%
1.9 42% 8 34*
20 61% 11 50%

Characteristic Percent Significant at 5%

Exponent Total Positive Negative
1.1 0.0 0.0 0.0
1.2 0.0 0.0 0.0
1.3 0.4 0.0 0.4
1.4 0.4 ‘ 0.0 0.4
1.5 0.8 0.0 0.8
1.6 4.7 0.8 3.9
1.7 7.1 1.2 5.9
1.8 10.7* 2.0 8.7%
1.9 16.6* 3.2 13.4%
20 24.1% 43 19.8%*

* Statistically significantly larger than expected at 5%.

serially dependent but this result depends on the assumption that the returns
are contemporaneously independent and that a, the characteristic exponent, is
greater than 1.7. These results are also subject to bias due to errors in the
variables and to the lack of a fixed regressor. The existence and interaction
of these factors make the tests based on the serial correlation coefficient sus-
pect.

V. DisTRIBUTION FREE TESTS OF SERIAL INDEPENDENCE

In order to provide more evidence about the movement of security prices in
the over-the-counter market non-parametric or distribution free statistics were
used to eliminate any assumptions concerning the underlying distribution of
the sample. To examine the independence of successive price changes, we
employed runs tests. Each price change was classified as a member of one of
three groups: +, if the price change is positive; —, if negative; and 0, if no
change occurs. The runs tests take the observed proportion of positive, nega-
tive, and zero changes as given and then determine whether there is any
significance to the observed ordering of these changes, i.e., whether there is
a pattern deviating from a random ordering.

A run in a time series over a trinary population is an unbroken series of
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elements of one type which begins and ends with an element of a different
type or with the beginning or ending of the series. For example, in the series
+-+———+, there are three runs, a run of pluses of length two, a run of
minuses of length three and a plus run of length one.

Runs by company were examined in the following manner. Let n,; be the
number of positive price changes, ny; be the number of zero price changes, ng

3
be the number of negative price changes. ny = Z ny, the total number of
=1

i
price changes for company j. Then py = %, i=1, 2, 3, can be taken as the
5

sample proportions for company j. Using these proportions, and assuming
independence of price changes, the number of total runs expected were calcu-
lated for each security for comparison with the actual number.

Given the assumption of independence, the distribution of the total number
of runs is approximately normal*® with mean,

nj(ny + 1) — X n;?
i

= 20
] n, 3 ( )

and variance,
2n?[Zn? 4 n(n4 1)] — 2ny S ny® —nd
i i i

o2 = . 21
3 Y Tr— (21)
. . R — .
The unit normal deviate, Z = M, where R; is the actual total number

0
of runs for company j, was calculated for each company for the full period
and for each half period. For the full period and first and second half periods,
respectively, the number of Z values significant at 5% were 19, 17 and 16 and
the number significant at 1% were 2, 2, and 2. None of these values is
statistically different from expected at the 5% level.

This evidence supports the random walk hypothesis. It is possible, however,
that the securities exhibit no statistically significant dependence when examined
individually, but the sample as a whole does, i.e., the distribution is skewed or
has a non-zero mean. To test this possibility the distribution of the deviates

]

Ry — . - . . .
Z= —jT—, without the continuity correction, was compared with the unit

j
normal distribution by means of the Kolmogorov-Smirnov "Test. Poorness of
fit implies the sample has statistically significant dependence. The test showed
that for the full period and the two subperiods, the null hypothesis could
not be rejected at the 5% level of significance. The distribution of the Z’s
is shown in Table 4.

The runs tests on individual securities and the Kolmogorov-Smirnov Test
unequivocally show that the “random walk” hypothesis cannot be rejected.
This evidence is particularly strong since it is free of distributional assumptions.

13. Wallis and Roberts [13, p. 571].
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TABLE 4
FREQUENCY DISTRIBUTION OF Z VALUES FOR TOoTAL NUMBER OF RUNS
First Second
Full Half Half
Interval Period Period : Period

30to 3.5 0 0 0
25t0 3.0 1 2 1
20to 2.5 5 4 3
1.5to0 2.0 12 8 14
10to 1.5 27 30 24
0.5t0 1.0 49 36 51
0.0to 0.5 38 50 43
—05to 0.0 33 46 45
—1.0to —0.5 50 36 29
—15to—1.0 22 20 23
—2.0to —1.5 7 16 8
—2.5t0 —2.0 7 3 10
—3.0to —2.5 1 3 2
—3.5t0 —3.0 1 0 0
Total 253 253 253

VI. SummARY AND CONCLUSION
Based on our random sample, the evidence indicates that monthly returns

of stocks traded over-the-counter are serially independent. This conclusion is
supported by the results of our distribution free tests while the results of the
serial correlation tests must be discounted because of the possible bias involved

in

the estimation procedure. .
The serial independence of over-the-counter security returns implies that

mechanical trading rules based on linear dependencies will not be able to earn
extra-normal profits. This result then is consistent with the hypothesis that the
over-the-counter market is a “weakly” efficient market.

10.
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