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1 What’s So Special About Predictions of Stocks?

Stock time series have a number of specific properties that, although not unique when
examined one by one, together make the prediction task rather unusual and calls for special
considerations when developing and evaluating a prediction system.

e Prediction of stocks is generally believed to be a very difficult task. The most com-
mon viewpoint, especially among academics, is that the task of predicting stocks
is comparable to that of inventing a perpetuum mobile or solving problems like the
quadrature of the circle.

e The process behaves very much like a random-walk process. The autocorrelation for
day to day changes is very low. Hawawini and Keim [18] conclude on several studies
that the serial correlation in stock price time series is economically and statistically
insignificant.

e The process is "regime shifting”, in the sense that the underlying process is time
varying. The noise level and volatility in the time series change as the stock markets
move in and out of periods of ”turbulence”, "hausse” and ”baisse”. This causes great
problems for traditional algorithms for time series predictions.

The obvious complexity of the problem and the strong resemblance to random-walk pro-
cesses has, as we shall see in the following chapters, direct implications on the prediction
task, the evaluation task and the application task.

On the positive side, the application of a prediction system for stock prices is somewhat
special:

e A successful prediction algorithm does not have to provide predictions for all points
in the time series. The important measure of success is the hit rate and the gen-
erated profit at the points where the algorithm produces predictions. The behavior
in between these points is not equally interesting. A missed opportunity to profit
doesn’t mean lost money!

The near random-walk behavior also implies a somewhat different evaluation situa-
tion than normally encountered:

e The evaluation of a prediction algorithm must be done with great care to avoid
both "Type I errors” (failing to accept a correct hypothesis) and ”Type II errors”
(accepting a false hypothesis). The problem is discussed in more detail in Section 6.

Another interesting property of this problem area is that the prediction algorithms them-
selves get integrated in the data generating process. Assume as an example that a new
sophisticated algorithm shows a superior and unquestionable predictive power when ap-
plied to both historical data and real trading. As this technique becomes public knowledge
and commonly used, the market participants will include the new algorithm as a new tool
together with all previously suggested and used stock evaluation methods. The predic-
tive power of the new algorithm will then decrease until it becomes useless. Viewed this
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way, what remains to make profit on in trading is no more than the residual from the
superimposed prediction algorithms that comprise the process of price generation. If the
superimposed algorithms do a good job, the residual should be indeed the near-random
walk that we are facing.

1.1 Common Viewpoints

It is very easy to get opinions from people about what ”has to be” successful strategies in
stock trading. It is equally difficult, by reasoning, to show that a proposed strategy is not
successful even if that really is the case. As we shall see in Section 6, it is very likely that
a random strategy appears to be successful even if tested for a seemingly long period.

1.1.1 The Efficient Market Hypothesis

The efficient market hypothesis (EMH) states that the current market price reflects the
assimilation of all the information available. This means that given the information, no
prediction of future changes in the price can be made. As new information enters the sys-
tem the unbalanced state is immediately discovered and quickly eliminated by a ”correct”

change in market price. Depending on the type of information considered, there exist three
forms of EMH:

The weak form: Only past price data is considered. This kind of EMH rules out any form
of predictions based on the price data only, since the prices follow a random walk in which
successive changes have zero correlation®.

e The semistrong form: All publicly available information is considered. This includes
additional trading information such as volume data (e.g. number of traded stocks)
and fundamental data such as profit prognoses and sales forecasts.

e The strong form: All information, publicly as well as privately available, is considered.

The application of the weak and semistrong forms of EMH has been fairly well supported
in a number of research studies, e.g. White [44], Lowe and Welsh [26], and has for long been
the ”official” viewpoint in the academic society. However, in recent years many published
reports show that the efficient market hypothesis is far from correct. Fama goes as far as
stating, in a review, that the efficient market hypothesis surely must be false [13].

The strong form has for obvious reasons been difficult to test statistically due to shortage
in available data. However, indirect methods analyzing the performance of mutual fund
managers did not prove them to be superior to other investor types [36].

1.1.2 Traders Viewpoint

Despite the traditionally massive support for EMH we have a majority of the market actors
believing, or at least claiming, that they can predict the prices in a way that can make

LA more strict description of the relation between random walk and the correlation can be found in
Section 6.
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them profit. Almost all professional traders rely to some extent on either technical or
fundamental analysis of past information. They buy when the market is ”bullish” and sell
when it is ”bearish”; thereby assuming a direct correlation between the current trend and
future prices.

There are also numerous research papers claiming that applying nonlinear models such
as neural networks and genetic algorithms can provide successful predictions. However,
this may not contradict the EMH if new useful methods are not immediately assimilated
by the global trading community. LeBaron [23], and Sweeney and Surarjaras [34], have
investigated technical trading strategies and found some evidence of a drop off in profit in
recent years.

Another reasonable argument against the EMH deals with the different time perspectives
different traders have when they do business. For example, a majority stock owner will
react quite differently than a floor day trader when a stock suddenly drops in value. These
differences in time perspectives will cause anomalies in the market prices even if no new
information has entered the scene. It may be possible to identify these situations and
actually predict future changes.

In summary, most arguments in favor of the EMH relies on statistical tests showing no
predictive power in the tested models and technical indicators. Most arguments against
the EMH refer to a time delay between the point when new information enters the system
and the point when the information has been assimilated globally and a new equilibrium
with a new market price has been reached. Viewed this way, the controversy is only a
matter of how the word ”immediately” in the EMH definition should be interpreted. It
may just be the case that traders in general simply are faster than academics.

2 Problem Formulation

2.1 Available Data

A prediction algorithm uses a set of known entities to produce a prediction of future values
of the same or other entities. In the case of stock predictions, the entities can be divided
into two categories; pure technical data and fundamental data. The technical data is the
only data used by the technical analysts. Their prognoses are based on past stock data only.
The fundamental analysts in addition to the pure technical data, include data related to the
companies’ actual activity and the market situation. In addition to these two categories
of data, derived entities can be produced by transforming and combining technical and
fundamental data. This section describes the most common entities used either as input
or output in the prediction of stocks.

2.1.1 Technical Data

The daily available data for each stock is represented in the following four time series with
data for each day of trading (normally Monday-Friday):

e yc or y : close value; price of the last performed trade during the day
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e yy : highest traded price during the day
e y;, : lowest traded price during the day

e V' : Volume; total number of traded stocks during the day

Data for each individual trade during the day is sometimes available as well. However,
this data is seldom used in data modeling of stock prices, but it is often used for timing
purposes before ”pulling the trigger” in real trading.

The most obvious choice of entity to predict is the time series yo or y. Some of the
drawbacks of this approach are:

e The prices y normally vary greatly and make it difficult to create a valid model for
a longer period of time.

e y for different stocks may easily differ over several decades and therefor can not be
used as the same type of input in a model.

The returns, defined in (1) in Section 2.1.3, are therefor often used instead.

2.1.2 Fundamental Data

Apart from the daily sampled data described above, there is a lot of information concerning
the activities and financial situation of each company. Most companies that are quoted
at a stock market are analyzed on a regular basis by the professional market analysts at
the financial institutes. The analyses are often presented as numerical items, which are
supposed to give hints on the ”true” value of the company’s stock. The buy and sell
recommendations are then formed, either intuitively or with some sort of mathematical
weighting of these numerical items. A fundamental analysis of a company typically focuses
on the following three factors (Achelis [2]):

1 The general economy:

e inflation.
e interest rates.

e trade balance etc.

2 The condition of the industry; The state of the industry to which the company
belongs:

e Other stock prices normally presented as indexes (i.e. weighted means) such as
the US ”Dow Jones”, the German "DAX” and the Swedish ” Generalindex”.
e The prices of related commodities such as oil, different metals and currencies.

e The value of the competitors’ stocks.
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3 The condition of the company. This is extracted from the company’s financial state-
ments. From these a number of useful variables can be calculated:

e p/e; The stock price divided by the earning per share during the last 12 months.

e Book value per share; net assets (assets minus liabilities) divided by the total
number of shares.

e Net profit margin; net income divided by total sales.
e Debt ratio; liabilities divided by total assets.
e Prognoses of future profits.

e Prognoses of future sales.

Of course, most of the work performed by the professional financial analysts is not publicly
available. However, there is plenty of high quality data published weekly in several financial
magazines. However, the availability of huge amounts of data in machine readable form is
much better for technical data than for fundamental data.

2.1.3 Derived Data

Returns. The one-step returns R(t) is defined as the relative increase in price since the
previous point in the time series:

_y) —y(t—1)
A common variant is the log-return
N y(t)

The log-returns are often used in academic research while the former version is most com-
mon in the trading community. If the natural logarithm is used, the two measures are very
similar for small changes, since In(%) ~ % — 1 = &£,

One often chooses to predict R(t) instead of the original prices y. Some of the reasons for
this are:

1. R(t) has a relatively constant range even if data for many years are used as input.
The prices y obviously vary much more and make it difficult to create a valid model
for a longer period of time.

2. R(t) for different stocks may also be compared on an equal basis (however, this is
seldom done in published research papers).

3. It is easy to evaluate a prediction algorithm for R(¢) by computing the prediction
accuracy of the sign of R(¢). An accuracy above 50% (or more precisely above the
mean) indicates that a true prediction has taken place.

R(t) can be generalized to cover more than one day intervals. The k-step-return
Ry(t) is consequently defined as:
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y(t) —y(t — k)
y(t —k)

The k-step-return Ry (t) can be interpreted as the k-day price trend for the stock.

Ri(t) =

Volatility. Volatility is a common concept in financial analysis. It describes the vari-
ability in a stock price y and is used as an estimate of investment risk, but also for profit
possibilities. There exist several definitions, see the thesis by Andersson [4]. The standard
definition is:

=1 Yi—1

Vo ZN (In(-2-) — m) (4)
S\ N-1
where m is the mean value,

al Yt
m =2 In(==—). (5)

=1 Yi-1

In this case the volatility equals the standard deviation of the log-return series R(t). If
the volatility is to be used as input in a model identification, a sliding window is normally
used for the sums in the definition. It has been shown empirically that volatility and
predictability of financial time series are connected, although a theoretical explanation
does not exist [33] .The volatility is of great interest for financial analysts and provides
useful information when estimating investment risk in real trading. The volatility may be
used both as input and output in prediction models.

Volume. The increase of traded volume V' is often viewed as an indication of new infor-
mation reaching the market. Therefor it may be useful to include the rate of change of V'
as an additional input variable.

Turning Points. Turning points in a stock price chart can be viewed as positions where
equilibrium between demand and supply has been reached. Therefor, they may be viewed
as more significant than the data in between, which could be regarded as noise in this
context. Therefor, one approach may be to use as input the distance in time and price to
the latest turning points.

Technical Indicators. Technical stock analysis deals extensively with derived entities.
For a thorough description of the most common technical indicators, see [22]. Some exam-
ples are:

e Relative Strength Index (RSI). The relation between the average upward and down-
ward price change within a time window of fixed length. The window is normally 14
days backwards.

e Moving average (MA). A price rise above a moving average is interpreted as a buy
signal, and a fall below it is interpreted as a sell signal.
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e Moving average convergence divergence (MACD). Two moving averages with different
backward windows are used. The difference between the moving averages are also
smoothed. Buy and sell signals are generated from the crossings and trends of these
filtered price signals.

e Relative strength (RS). The concept of relative strength trading involves selecting
stocks for trading by their performance compared to the general market, represented
by some relevant index.

Even if the relevance as predictors of most of the standard technical indicators is highly
dubious, they may be useful as input in various prediction models.

Artificial Data. Generating artificial data by adding noise to y (or by shifting data
slightly) introduces a degree of time invariance. It’s a way of telling the inference system
to concentrate on the fundamental properties of the data instead of trying to model what
really is noise. Bishop [6] has shown that adding noise to data is equivalent to Tikhonov
regularization. More information about regularization is found in Section 5.7.

Relative Stock Performance. Instead of attempting to predict individual stock prices,
one may address the problem of performing and comparing predictions for many stocks
at the same time. The central problem in portfolio management concerns selecting the
weights of stocks in a portfolio in such a way that the investment risk for a given level of
expected return is minimized. The traditional portfolio theory uses quadratic programming
methods to minimize the variance of the returns in the portfolio. New approaches show
that investors perceive risk only on the downside part of the return distribution. New
concepts such as target semivariance and downside risk are often used [1].

Another multi-stock approach is to predict the relative levels or a ranking list of a given
set of stocks. The rank of a stock is computed as the stock’s position in a sorted list of
stock returns.

2.1.4 Data Transformations

The input data described above is often transformed before the actual modeling takes
place. The purposes of the transformations can be divided into the following categories:

Dimensionality Reduction. In principle, future values in the time series are dependent
on all previous values. Therefor, it is sometimes useful to compute aggregated entities to
be used as the actual inputs in the modeling. Examples are running means of y, yg, vy,
and V.

Normalization. The purpose of normalization is to reduce range differences in the input
variables. Two major types can be distinguished:

1. Reduction of size differences between different input variables to enforce similar be-
havior upon the modeling algorithms. For example, before entering variables into an
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artificial neural network, all variables are often scaled to cover the range 0-1. This
scaling, and the corresponding re-scaling of the network output, is often performed
automatically in many neural network software packages.

2. Reduction of size differences over time in an input time series. It reduces the non-
stationary effect. For example, normalized y, yg and y.: The measured time series
y, yg and y;, often varies by several hundred percent if measured for some years.
Therefor, it is often necessary to normalize the data to reduce the non-stationary
effect. There exist several procedures. Some examples are:

Transformation to relative changes (returns) as defined in (1).

Transformation to log-returns as defined in (2).

Normalization using the mean.

Normalization using both the mean and the standard deviation.

As explained in Section 2.1.3, the first two measures are very similar for small daily changes.
The motivation for using the log-return is statistical; the variance becomes stabilized and
outliers become less dominant. Both transformations are very common in time series
predictions of financial data.

The normalization using the mean is defined as

Yn(t) = y(1)/Ymean(?) (6)

where the mean value 40 (t) is computed using a running window of fixed length n, e.g.
30 days backwards. The normalization with the mean and standard deviation is defined as

n(t) = (Y(t) = Ymean(t)) /oy (1) (7)

where the estimated standard deviation o, (%), like ¥mean(t), is computed in a running
window of length n. The variable y,(t) is expressing how many standard deviations the
y values may differ from their running mean. Similarly, compute the normalized volume
Va(t) as

Va(t) = (V) = Vinean (1)) /v (1) (8)
where the mean Ve, () and the standard deviation oy (¢) of the volume are computed in
a running window of fixed length ny. A normal backward window size is ny = 30 days.
V,.(t) is expressing how many standard deviations the volume figure differs from its running
mean.

Linearization. It is often advantageous to remove obvious nonlinear factors that would
otherwise have to be taken care of in the modeling. One example is the volume V()
which is often distorted by extremely high figures resulting from individual trades by large
institutional traders such as mutual funds. The linearization in this case may be a pre-
processing squashing function that suppresses values outside a set boundary. For example,
the input V() may be transformed to V' (¢) according to:

' 1

V)= )

14+e-V®
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Principal Component Analysis (PCA). Principal Component Analysis provides an
efficient technique for dimensionality reduction of a data set. It works by finding a linear
transformation 7" which is applied to the original data set of p dimensional vectors. The
transformed vectors are still p dimensional, but 7" is computed in such a way that the
variances along each of the new p dimensions are sorted in a descending order by their
sizes. Therefor, a dimensionality reduction of the data set can be performed by simply
ignoring the dimensions with the smallest variances. The mean-squared error in such a
truncation can be shown to be the sum of the variances of the truncated dimensions. 7' is
computed by solving an eigenvalue problem, commonly encountered in linear algebra. The
etgenvectors of the correlation matrix R correspond to the axes in the new transformed
coordinate system and the eigenvalues correspond to the variances measured along each one
of these axes. Principal component analysis has been successfully applied for dimensionality
reduction in many areas such as image recognition and speech recognition [19].

2.2 Defining the Prediction Task

In this section we will discuss various ways in which the prediction problem can be formu-
lated. The discussion will be restricted to predictions of stock price. It should be noticed
that the stock’s price is not the only entity of interest for a stock analyst. We will formu-
late the general prediction task as a special case of Inductive Learning which is defined as
follows:

Given a set of N examples {(x;,z;),i = 1, N} where f(z;) = z;,Vi,return a function ¢
that approximates f in the sense that the norm of the error vector £ = (eq,...,ey) is
minimized. Each e;is defined as e; = e(g(x), z;) where e is an arbitrary error function.

A general prediction task may be formulated as a special case:

2.2.1 Prediction as Inductive Learning

In the case of prediction problems we define a time order and pick examples from time series:
Given a set of N examples, {(X(¢),2(t + h)),t = 1,..., N}, where f(X(t)) = 2(t + h), Vt,
return a function ¢(¢) that approximates f(¢) in the sense that the norm of the error vector
E = (ey,...,ex) is minimized. Each e, is defined as e; = e(g(X(t)), z(t + h)) where e is an
arbitrary error function. Thus we are aiming at approximating z(¢+h) with ¢(X(¢)) where
h is the prediction horizon. The prediction error in time step ¢ is a function e of example
output z, and g applied on the example inputs X.

In order to be more concrete we need to specify the following entities:

e The "Input”, i.e. the X(¢) vector.

The ”Output”, i.e. the z(t) vector.

The error function e(g(X), 2)

The error measure, based on some vector norm, for computing || E||.

Prior knowledge of the approximating function g.



Predicting the Stock Market 13

It is interesting to note that the function ¢ that we eventually learn depends on all these
entities. Even the error function, which often is regarded as a mere measure of goodness of
fit, is highly involved in the model selection. By specifying the above five entities a number
of general prediction approaches can be expressed:

The Standard Time Series Approach. The input part X and output part z of each
example (X(), z(t + h)) have the following form in this approach:

X(t) = (y(1),y(t = 1), .., y(t =k + 1)) (10)

z2(t+h)=y(t+h). (11)

The inputs are thus formed as lagged values of the time series y(t), that we want to predict
h steps ahead. In the case of stock predictions, the time series y(t) is typically the returns
according to (1) or the closing price each day for the stock. The prediction error e in each
step is taken as the difference between what g provides and what the examples suggest:
e = g(X(t)) — z(t + h). The root mean square error (RMSE) is used as the vector norm:

1 N—h
1Bl = g & 12)

t=k

The bias for the unknown function ¢ can be chosen in many ways. Common choices are:

e A linear autoregressive (AR) model:

d

g(t) =Y amy(t —m). (13)

m=1

e A general nonlinear model implemented with a feed forward neural network.

The time series formulation is not always ideal for useful predictions of financial time series
for the following reasons:

1. The fixed prediction horizon h does not reflect the way in which financial predictions
are being used. The ability of a model to predict should not be evaluated at one
single fixed point in the future. A big increase in a stock value 14 days in the future
is as good as the same increase 15 days in the future!

2. The underlying processes that generate the time series have dramatically different
characteristics for different parts in the series. It is therefor not a very good idea to
attempt to fit a global model, however ingenious, for the entire time span. On the
other hand, using a sliding window and computing models such as the autoregressive-
moving average (ARMA) model within the window is ”too narrow minded” and uses
no knowledge from data outside the fixed window.
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3. The RMSE measure (12) treats all predictions, small and large, as equal. In the
case of predicting returns, i.e. y(t) = R(t) in (1), this is not always appropriate.
Predictions that would never be used for actual trading (i.e. price changes to0 small
to be interesting) may cause higher residuals at the actual points of interest, in order
to bring the RMSE to a minimum. One solution to avoid this would be a weighted
RMSE measure, where small predicted changes were attenuated or completely can-
celled from the right hand side sum in 12. However, this would favor a global zero
change prediction (g(X(t)) = 0 for all ¢), which would give a RMSE equal to zero!
However, the possible profit made from such a prediction system would not be over-
whelming. Alternative modifications of the error function and the vector norm are
possible but have not been further examined in this study.

4. A small predicted change in price, followed by a large real change in the same direc-
tion, will be penalized by the RMSE measure. This is not in agreement with the way
we judge the quality of a stock prediction in actual trading.

The Trading Rule Approach. Instead of predicting stock prices for all points 1 to /V,
algorithms can be constructed to recognize situations where one should buy and sell stocks
respectively. This approach can also deal with some of the disadvantages of the Standard
Time Series approach described above.

The task can be defined as a classifying problem with three classes: ”Buy”, ”Sell” and ” Do
nothing”. Since we want classifications for all points 1, ..., N, we still need to use the time
series framework. A trading rule can be described as a time series T'(t) defined as

Buy :if g(X(t)) >0
T(t) =4 Sell o if g(X(2) <0 5. (14)
Do nothing : otherwise

The unspecified function g determines the type of the trading rule. The general problem
of generating the function g can be formulated within the general framework of Inductive
Learning.

The input part X of each example (X(t), z2(¢ + h)) has the following form:

X(1) = (Ri(t), ..., Ru(1)), (15)

where each Ry (t) is an observable feature at time ¢. In the case of stock predictions it may
be for example the k-day returns as defined in (1) or a standard technical indicator such
as the RSI or the MACD.

The output part z of each example has the following form:

2(t+h) = R(t+h). (16)

The prediction error e in each step is somewhat different from the time series approach:
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1: ¢g(X(t))> «a AND z(t) <0
ee=1¢ 1: ¢g(X(t)) < —a AND 2(¢) >0 (17)
0: otherwise

The ordinary RMSE measure (12) is used as the vector norm. The learning task is as
before to find a function g that minimizes ||E|| in (12).

This formulation covers the so-called ”technical indicators”, which are very common in
real trading. Even if they are seldom generated in this formal way, they can often be
reformulated as a trading rule T'(¢) as described above. One example is a moving average
trading rule, that can be built from two moving average functions operating on the stock
prices y(t). Buy and sell signals are generated when two moving averages of different
orders intersect. It should be emphasized that the relevance of most of the commonly
used technical indicators is highly dubious. Our own studies of the correlation between a
number of technical indicator signals and future stock price movements show no significant
correlation! However, the general trading rule formulation can be of great interest when
developing new prediction algorithms. Since the prediction deviation ||g(X(¢)) — 2(¢)|| for
the "Do nothing” situations is excluded from the error measure, it is possible to develop a
model that takes into account the varying noise contents in the data. In this way regions
with low predictability can be excluded from the model.

3 Methods

In this section we review some of the techniques commonly used in prediction of time series
in general, and financial time series in particular.

3.1 Traditional Time Series Predictions

The beginning of traditional time series analysis might have been in the end of the 20’s
when Yule invented the autoregressive method (AR) in order to predict sunspots. The
general AR-model expresses future values of the time series as a linear combination of past
values plus a random noise component:

d

y(t) =>_ amy(t —m) +e(t) (18)

m=1

Another common model for time series analysis is the moving average model (MA):

M

y(t) =Y bue(t — n) (19)

n=1

The above equation describes a situation where the time series y is controlled by an external
time series e in a linear and deterministic relation.

Combining the two equations yields the autoregressive-moving average (ARMA) model,
which dominated the time series analysis for more then 50 years. An important step beyond
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these global linear models was taken by Tong and Lim in 1980 when they suggested the
threshold autoregressive model (TAR). TAR consists of two AR models which are selected
locally depending on the system’s state.

3.2 Machine Learning

Several methods for inductive learning have been developed under the common label ” Ma-
chine Learning”. All inductive methods use a set of examples to generate an approximation
of the underlying function that generated the data. Each example comprises an input vec-
tor and an associated output vector. The aim is to draw conclusions from the examples in
such a way that when new, previously unseen, input vectors are presented to the system,
the output vectors can be successfully predicted.

3.2.1 Nearest Neighbor Techniques

The method of k-nearest-neighbors is a general classification technique that makes minimal
assumptions about the underlying function to be modeled. To classify a point p one simply
finds the set of k closest points from the example set. In the case of time series the
input points p; are typically formed by picking consecutive values from the time series y;
pe=(y(t—1),y(t—2)...,y(t —d)). In the general case, the input points p; can be any type
of feature vector that is believed to have predictive power. We have conducted extensive
tests with feature vectors consisting of stock returns Ry, defined in (3). For example,

pe = (Ru(t), B5(t), Rio(t), Rao(2)).

In stock prediction, the classification Cy(t) for the points is typically the sign of the k-day
return computed k days ahead (i.e. Ry(t+k)):

+1 it y(t+k) > y(t)
Cr(t) =< —1  if y(t+k)<yt) ;. (20)
0 : if y(t+k)=uy(t)

The closeness is normally computed as the Euclidean distance in the input space. The
mean or median classification of the k& closest points is then taken as an estimate of the
classification for point p . In this way we can immediately produce classifications given a
set of examples. There exist a multitude of variants of the basic algorithm. A discussion
of weighting schemes can be found in Robinson [32]. For an early work on time series
applications and proofs of convergence, see e.g. Yakowitz [46].

Even if the k-nearest-neighbors algorithm is computationally expensive in the application
phase, it is very attractive in initial data analysis, where questions about predictability and
input variable selection are the important issue. It can be argued that failure in applying
the k-nearest-neighbors algorithm to a specific problem implies that the problem can not
be solved with any inductive method. The sole assumption made in the method is that
close inputs are mapped to close outputs. It’s hard to see how a sufficient amount of data
from any continuous function should fail in such a test. The conclusion in such a case
would be that a functional relation between the selected input and the output can not
be shown given the available data, without imposing further restrictions on the functional
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relationship. However, other methods using stronger models (described further in Section
5.3), may be more successful than the totally unbiased k-nearest-neighbors algorithm. One
must also realize that k-nearest-neighbor in a normal implementation is a global method.
In the search for nearest neighbors one either scans the entire training set or all previous
points in the training set. The latter method is used to avoid peeping into the future
when predicting a point classification. In either case, the neighbors are picked from a
time period that may very well be too long if the underlying function is non-stationary.
Weighting schemes or windowing techniques may be useful in such cases.

3.2.2 Neural Networks

Neural networks are typically used for pattern recognition tasks. A set of examples is
presented as input for the network which is trained to assign each example to one or more
classes. The examples consist of a number of features and an associated class assignment.
Neural networks are often also used for nonlinear regression, where the task is to find a
smooth approximation between multi-dimensional points. In both cases, the input and
output data is presented simultaneously to the network. In the case of predictions of time
series, the situation is somewhat different. No patterns with features are available. Instead,
future time series values should be modeled as a function of previous values. This temporal
dimension can be incorporated into the network setup in a number of ways:

e The lagged values of y(t), i.e. y(t),y(t —1),y(t —2),..., can be used to construct a
feature vector, which is input to the neural network. This can be viewed as a nonlinear
generalization of the AR method previously described. The network output can be
written as:

O(t) = gly(t —1),y(t = 2)...,y(t — d)], (21)
where ¢ is a nonlinear function that is created in the training of the network. As a
d
special case g(y) = > any(t —m)+e(t) is recognized as the well-known AR model.
=1

The motivations for;l this nonlinear generalization is the following. First, Takens
Theorem [35] states that for a wide class of deterministic systems, there exists a
diffeomorphism (one-to-one mapping) between past values y(t—1),y(t—2)...,y(t—d)
of the time series and the state of the system at time t. This further implies that
there exists a function g so that y(t) = g[y(t — 1),y(t — 2)...,y(t — d)]. Second,
it has been shown that a neural network is an universal approximator, capable of
approximating any continuous function [8]. These statements together give the basic
motivation for the use of artificial neural networks in time series prediction.

e Recurrent neural networks have an architecture where the outputs from intermediate
neurons are fed back to the input layer. In this way the network will contain memory
of previous values of the input data. A single value y(¢ — 1) is used as input and
a single value O(t) is produced as output from the neural network. The tempo-
ral dependencies are modeled in the weights in the feedback loops in the network.
Applications of recurrent networks can be found in Ellman [10].

e Another sophisticated method replaces the connections between nodes in a feed-
forward neural network with FIR filters. A FIRfilter is a moving average filter with
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input z and output y:
M
y(t) = bya(t —n). (22)
n=1

In this way memory of old values is stored in each FIR filter. The number of necessary
weights can sometimes be significantly reduced by assuming an implicit symmetry in
the optimal network structure[38].

Neural Networks as Classifiers. Neural networks are also often used for classification
problems where p-dimensional input vectors are to be mapped to a m-dimensional output
vector with exactly one element set to one and the rest set to zero. The position of the
element set to one represents the class associated with the corresponding input vector.
In this way, examples of input vectors and corresponding output vectors can be used
to train the network to assign a class label to unknown input vectors. It is typically
implemented with a multilayer perceptron with p inputs and m outputs. The output layer
often uses the sigmoid as an activation function producing a m-dimensional output vector
with values in the closed interval [0,1]. It has been shown (see e.g. [19]) that the output
from a successfully trained network is an asymptotic approximation of the a posteriori class
probabilities. This means that the optimum classification of an input vector is the position
in the output vector that has the highest value. It is common to offset the target output
vectors by a small amount ¢ such that the zero-elements are represented by e and the
one-element by 1 — . The reason for this is the need to avoid saturation of the activation
function in the training process. In this case the output from the trained network can not
be directly interpreted as a probability. A linear transformation [g,1 —¢] — [0, 1] must be
first applied. However, the position in the output vector that has the highest value is still
the optimum classification for a given input vector.

The ”Capacity” of a Neural Network. An interesting remark about the relation
between polynomial regression and regression with neural networks is given by Gershenfeld
and Weigend in [16]. The complexity of a polynomial is increased by introducing pairs
(x129, T123, ...) of the input vector (xy, z3, x3,...). Each new pair has associated weights to
be estimated in the regression. Cover (1965) has shown that both a neural network and
a polynomial have a ”capacity” proportional to the number of parameters, i.e. a neural
network can not express "more” functions then a polynomial with the same number of
parameters. The difference, that is in favor of the neural networks, is that the order of
interactions between inputs has to be chosen explicitly in the case of adding new parameters
to a polynomial model. The neural network has the power to find the suitable order of
interactions in the learning process. Adding a weight simply increases the number of
interactions and not the order of interactions.

3.3 Technical Stock Analysis

The term technical analysis denotes a basic approach to stock investing where the past
prices are studied, using charts as the primary tool. The roots of technical analysis go
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back to the Dow theory, developed in the beginning of this century by Charles Dow?. The
basic principles include concepts such as the trending nature of prices, confirmation and
divergence, support/resistance and the effect of traded volume. Many hundreds of methods
for prediction of the stock prices have been developed and are still being developed on the
grounds of these basic principles. Most of the developed prediction methods have very
weak scientific support and it is probably fair to say that the authors of the numerous
books on Technical Stock Analysis have made more money selling their books than either
themselves or their readers have made applying the theories in practice. A thorough survey
of the most common technical indicators can be found in [2].

4 Evaluating Performance

The correct way to evaluate prediction performance depends on the approach chosen for the
problem formulation as described in Section 2.2. We will start by describing some common
benchmarks and then some common error measures. Further notes regarding evaluation
are discussed in Section 6.3.

4.1 Benchmarks

The need for good benchmarks when evaluating stock prediction algorithms can not be
overestimated. What is good and bad performance depends on the alternatives. Even a
prediction algorithm that loses money for some period of time may turn out to be successful
when compared to other alternatives. We will discuss three benchmarks commonly used
for evaluating prediction algorithms.

4.1.1 Naive Prediction of Stock Prices

The naive prediction asserts today’s stock price as the best estimate of tomorrows price.
This is a direct consequence of the random-walk hypothesis. It is always a good idea to
measure the goodness of a predictor in relation to this trivial predictor. This is done in
Theil coefficient of inequality described below as T}, in Section 4.2.1.

4.1.2 Naive Prediction of Returns

The naive prediction of stock returns asserts today’s return (increase since yesterday)
as the best estimate of tomorrows return . This naive prediction is formed from the
observation of a one-step memory in the price generating process. In [20] we show that the
autocorrelation of stock returns exhibits a significant first lag component that indicates
a correlation between adjacent returns. It is a good idea to measure the goodness of a
predictor in relation to this trivial predictor. This is the purpose of our suggested measure
”Relative hit rate”, denoted Hy and described in Section 4.2.2 below.

2The widely used Dow Jones Industrial Average followed as a direct result of Charles Dow’s new methods
of analyzing the markets.
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4.1.3 Buy-and-Hold

The Buy-and-hold test finds out whether the net profit result using a prediction algorithm
or strategy is due to prediction accuracy or merely to a general market trend. The buy-
and-hold return r, for a time period {t...t + n} of a stock is defined as

Tb — (yt-l-n - yt)’ (23)
Yt

i.e. the profit made when buying at the start and selling at the end of the time period.

4.2 Metrics for Testing

The general metrics for testing work by comparing the predicted values to the actual
outcome in the training data and ultimately in the test set. Refenes [30] has presented
a survey of a large number of measures of performance. In this section we present those
we have found essential as well as some new important metrics for serious evaluation of
financial prediction algorithms.

4.2.1 Theil Coefficient

Predicting Stock Prices. The predictions of stock prices for time ¢ are expressed by
the time series {y(t),t = 1,...,N}. The actual prices are denoted by the time series
{y(t),t = —d+1,—-d+2,...,0,1,..., N}. Tt is assumed that the d first points in y(¢) are
used in the initial upstart phase.

The Theil coefficient of inequality provides a measure of the model performance relative
to the naive price predictor.

¢ S (w(t) — (1) o

\/z 0 -yl — 1))

For T, > 1 the predictor is worse than the naive price predictor while 7, < 1 implies
that the predictor is making better predictions. The naive predictor asserts that the best
estimate of tomorrow’s price y(t + 1) is today’s price y(t).

The Theil coefficient is often referred to as the information coefficient or the t-test.

Predicting Returns. The Theil coefficient (24) compares the performance to that of the
naive price predictor. We propose a similar measure to compare to the performance of the
naive return predictor. The predictions of returns at time ¢ are denoted by the time series
{R(t),t =1,...,N}. The actual returns are denoted by the time series {R(t),t =1,..., N}.

The Theil coefficient for returns provides a measure of the prediction performance relative
to the naive return predictor.
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J S (R(t) - R(1)? .

\/z Rt 1))

For T, > 1the predictor is worse than the naive return predictor while 7, < 1 implies that
the predictor is making better predictions.

4.2.2 Hit Rate

The hit rate of a predictor indicates how often the sign of the return, i.e. the daily change
defined in (1), is correctly predicted. It is computed as the ratio between the number of
correct non-zero predictions R(t) and the total number of non zero moves in the stock time
series.

{tlR(ORE) > 0,6 =1,..,N}|
{tIR(RE) £0,t=1,..,N}|

H= (26)

R(t) is the prediction of R(t) computed at time ¢—1. The norm of the set in the definition
is simply the number of elements in the set.

In analogy with the Theil coefficient the corresponding measure for the naive return pre-
dictor is proposed:

H{t|R(t)R(t —1) > 0,t =1,...,N}|
H{t|R(t)R(t —1) #0,t =1,..., N}|

Hy = (27)
Finally, the ratio between the two hit rates provides the predictor’s hit rate performance
relative to the naive return predictor:

Hy = — 28
o= 71 (28)
This entity Hy which we call ” Relative hit rate”, compares the hit rate of the predictor to
that of the naive return predictor. For Hy < 1the predictor is worse than the naive return
predictor, while Hy > 1 implies that the predictor is making better predictions.

The reason for avoiding both zero predictions and zero returns in the computation of the
hit rate is the following. If zeros were included, we would have to decide whether the fol-
lowing five combinations should be regarded as "hits” or not: zero prediction/outcome>0,
zero prediction/outcome<0, zero prediction/zero outcome, prediction>0/zero outcome,
prediction<0/zero outcome. Whatever choice is made for the classification of these situa-
tions, a non- symmetric treatment of the positive and negative returns will result. Since
the zero returns can account for more than 20% of the samples in typical stock data, see
[20], they would result in ”Up fractions” arbitrarily either greater than or less than 50%.
Such a result would conceal the random-walk nature of the time series. By removing all
zeros from both predictions and outcomes, ”Up fractions” very close to 50% are achieved.
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4.2.3 Mean Profit per Trade

The ultimate measure of success for a prediction algorithm is it’s ability to produce profit
if applied to real trading. This profit can be approximated by applying the algorithm to
the available data sets; the training set and the test set. As always, the performance on
the training set may very well be subject to overtraining and should not be used as a final
performance measure. The mean profit for a trading rule-oriented prediction algorithm is
simple to compute. Just loop over the time interval in question and apply the trading rule
to the computed prediction function f according to (14). Buys and sells are then executed
according to the trading rule and accumulated for the whole time period.

The mean profit for a time series prediction is computed as

% > sign(p(t) = y(t = 1) (r(t) — y(t = 1), (29)

i.e. a trade is assumed at every time step, in the direction of the predicted change.

A realistic evaluation of performance must also include trading cost in the performance
calculation.

5 General Learning Issues

5.1 Statistical Inference

Model-free estimation and non-parametric statistical inference deal with the problem of
finding a hypothesis function using a set of examples as primary information. The estima-
tors can take many forms: algebraic or trigonometric polynomials, neural networks, step
wise linear regression etc. Many of these techniques have been shown to share the common
property of being universal approzimators, capable of approximating any continuous func-
tion. In the case of neural networks it was first shown by Cybenko [8]. Note that these are
theoretical results which may require a model with arbitrary complexity for convergence.
The convergence also assumes an infinite example set. Furthermore, the data must be
free of all noise. Conditions which are seldom fulfilled in real applications. The general
limitations of statistical inference are also clearly understood and are formulated as the
”bias/variance dilemma’”[15].

5.2 Bias and Variance

To estimate an unknown function f(P) that has produced a finite set of examples (P, T)
the following general procedure for inductive learning can be applied:

1. Draw a random training set from the set of examples
2. Train one estimator h;(P) (e.g. a neural network)

3. Evaluate the estimator on a randomly picked test set of examples
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Repeat steps 1-3 a large number of times, producing hypothesis functions hq, ..., hy.

Now concentrate on what we have produced for a specific point p. We have a number of
different estimators hy(p), ..., Ax(p). Since they all depend on random selections of training
data, they can themselves be viewed as outcomes of a random variable hp with mean mp
and variance Vp.

The mean squared error for the predictions at the point p can be expressed as:

E, = E[(hp — f(p))’] = B[l + f(p)? — 2hpf(p)] = Elhp] + f(p)* — 2f (p) Elhp]. (30)

Using the identity V, = E[hZ] — m.

E, =V, +m, + f(p)* = 2f(P)E[hp] =V}, + (m, — f(P))". (31)

The mean squared prediction error E, thus is a random variable with two components
termed bias and wvariance:

e Bias: (m, — f(p))?. The amount by which the average estimator differs from the true
value.

e Variance: V},. The variation among the estimators.

The mean mp can be estimated as }; h;(p)/N and the variance Vp can be estimated as
Si(hi(p) —mp)?/(IN — 1). Note that explicit estimation of Ep requires knowledge of the
underlying function f. This is seldom, if ever, the case, otherwise there would be no need
to estimate it. There exist statistical methods to estimate Ep without this knowledge of
f. For example, the jackknife, and the bootstrap techniques [9]. However, it is possible to
proceed without explicit calculation of Ep by looking at how the estimators’ complexity
affects the distribution for Ep. Depending on the estimators’ complexity, we get the
following extreme cases:

e Too low complexity (e.g. a straight line or a neural network with few weights) The
computed estimators hy(p), ..., hy(p) will produce roughly the same values since a
low complexity model does not have the power to express minor differences between
different samples of training data. Hence the variance Vp will be low. However, the
bias will be high, since all of the estimators differ in the same way from the true value

f(P).

e Too high complexity (e.g. a neural network with several layers and many weights)
The computed estimators hy(p), ..., hx(p) will train precisely to each training set,
thereby producing high variance Vp for the estimators since each estimator operates
on different random samples of training data. However, the bias will be low, since
the mean value mp computed as Y; h;(p)/N will be centered around the true value

f(P).
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Now turn to the ”real” situation where only one single estimate h;(P) has been produced.
It is still an outcome of the random variable h(P) with its associated mean and variance. So,
from what distribution on the estimates do we prefer to pick the single estimate: one with
low-variance/high-bias or one with low-bias/high-variance? The choice is partly controlled
by the complexity of the model. Looking at Equation (31), the correct answer would be
that neither of the alternatives is optimal in terms of giving a minimal prediction error
E,. The best choice is a trade-off between low bias and low variance. Since the complexity
affects the entities in different directions, we are facing what is called the ”bias/variance”
dilemma. A large variance has to be accepted in order to keep the bias low and vice versa.

According to Casdagli and Weigend [7], the position taken by most statisticians is, ”for
reasons of conservatism”, to favor low-variance/high-bias over low-bias/high-variance. This
choice results in nonlinear models with relatively low complexity and few parameters. These
models work fine if the underlying function is equally simple and the interesting behavior is
mainly due to outside perturbations. For more complicated functions, models with higher
complexity must be used to get acceptably low prediction error. The price to be paid for
this additional expressiveness is higher variance.

In some cases a low complexity model can be designed using prior knowledge about the
specific application of interest. In such cases the bias is "harmless” since it is directed
towards the real function f(P). The bias then can be brought down without increasing the
variance. This approach can be applied even to black box models such as neural networks.
In weight sharing several synapses (connections between nodes) are using the same weight.
In radial basis networks the receptive field of the neurons in the hidden layer can be preset
to reflect known properties in the function to be modeled. The general situations are
described with the terms ”Weak” and ”Strong” modeling.

5.3 Weak and Strong Modeling

The terms weak and strong modeling refers to the degree to which a model is preconditioned
to reflect the underlying process to be modeled. A weak model makes few assumptions
on what the real process looks like, whereas a strong model makes many assumptions.
The traditional choice in the natural sciences has been to prefer strong models, which
are tightly connected to the actual process. The parameters in such models can often be
given a "meaning” in terms of slopes, constants, thresholds etc. However, there are also
examples of weak modeling. In Physics one sometimes model dynamic systems as fairly
general nonlinear functions [7]. The classic ARMA models described in Section 3.1 are also
examples of weak models with few domain-specific assumptions.

5.4 Overfitting and Underfitting

The term overfitting is used to denote the situation, where the selected model type has
too high complexity with respect to the ”bias/variance” trade-off. The term underfitting
denotes situations where the model has too low complexity.
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5.5 Overtraining

The term overtraining refers to a situation, where a model is fit too closely to the training
data, thereby decreasing the computed models generalization performance. The problem
is caused by allowing the learning algorithm to keep iterating in an attempt to bring the
total prediction error on the training data to an absolute minimum. However, when the
prediction error has reached a point below a certain, problem specific, limit, the algorithm
will start fitting properties in the training data which are not general but rather to be
considered as noise. The generalization performance will therefor decrease from that point
on in the learning process. The phenomena is normally connected to ”"weak modeling,”
where the model is totally unbiased and capable of fitting data from any data source. It
is also connected to the issue of model complexity, since the point where the overtraining
starts depends on the model’s expressiveness. A model with a low complexity (e.g. a
straight line) will be less sensitive to the problems with overtraining. A high noise level in
data also increases the risk of overtraining, since noisy data gets interpreted more easily as
real data by the training process. The risk for overtraining is also affected by the amount
of data used for the training of the model. A lot of data prevents a model of a certain
complexity from interpreting noisy data as real.

Statements such as "In the statistical context there is no such thing as overtraining” [45]
are valid only in situations with low noise levels, combined with either a strong model or
a weak one with low complexity. In other situations, the issue of overtraining is a reality
and the training process, in our opinion, should be regarded as part of the model selection
rather than a mere parameter estimation problem. Further support for this viewpoint is
presented in Section 5.7.1.

The problem with overtraining can be solved either indirectly, by reducing the model
complexity, or directly, by interrupting the learning algorithm. Refer to Section 5.7 for a
further discussion on this issue.

5.6 Measuring Generalization Ability

The crucial measure for all learning algorithms is the ability to perform well when pre-
sented with unseen data (also called: out-of-sample performance). The difference between
the performance on the training data and on unseen data is dramatically increased when
low-bias models such as artificial neural networks are considered. The importance of good
estimates of the performance on unseen data in such situations can be hardly overesti-
mated. Apart from being the principal performance measure for a modeling problem, the
generalization ability is also an important tool for model selection.

The theoretical aspects of why and when learning works is covered by computational learn-
ing theory, a field in the intersection of Artificial Intelligence and Computer Science. A
result from the sub-field PAC-learning (Probably Approximately Correct) gives the follow-
ing relation between the number of necessary examples m and the set of possible hypotheses
H:

1

>1<1
m2 - (lng

+ln|H|>, (32)
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where ¢ is the error in a specific hypothesis and § is the probability of a non correct
hypothesis being consistent with all examples. Thus, by using at least m examples in the
training, then with probability at least 1 — ¢ the produced hypothesis has an error of at
most €. Even if the practical results of PAC-learning are still limited, it centers the focus
on two important things:

e The aim of learning is to find an approximately correct hypothesis. Traditional learn-
ing theory focused on the problem of identification in the limit where the hypothesis
should match the true function exactly.

e The size |H| of the hypothesis space, i.e. the model complexity, is a key issue for
both estimation and control of generalization ability.

There exist a number of methods to estimate the generalization ability.

5.6.1 Test-Set Validation

The standard procedure for validation in most machine learning techniques is splitting the
data into a training set and a test set. Sometimes the training set is further divided to
extract a cross validation set (used to determine the stopping point to avoid overfitting).
The test set is only used for the final estimation of the generalization performance. This
approach is wasteful in terms of data, since not all the data can be used for training. The
advantage is that no assumptions regarding error distribution or model linearity have to
be made. In the case of neural networks, Weigend and LeBaron [40] have shown that
the variation in results, due to how the splitting in the three sets is done, is much larger
than the variation due to different network conditions, such as architecture and initial
weights. The method used to show this is a variation of the procedure described in Section
5.2. By really generating a huge number of independent hypothesis functions the variance
can be explicitly estimated. Weigend and LeBaron use predictions of traded volume on
the New York Stock Exchange as their application. Volume data is known to contain
more forecastable structures than typical price series. However, it is dominated by a noise
component, which makes the analysis sensitive to the splitting of the data.

In our opinion this result should not be seen as a disqualification of the method of test-set-
validation, but rather as an illustration of the general problem of all inductive inference
methods. We investigate the statistical difficulties with predictions of noisy data further
in Section 6.

5.6.2 Cross-Validation

Cross-validation takes the idea of test-set-validation to an extreme. Assume that the entire
data set contains N data samples. One sample is left out and the remaining samples are
used to train a model. The performance of this model is estimated by the squared error
in the left out sample. The procedure is repeated for all N samples in the data set, thus
producing N models with associated error estimates for the single left out point. The mean
of these estimates is used as a total estimate of the prediction error for the model. If N
is large, the method easily gets too expensive in terms of computations. Variations where



Predicting the Stock Market 27

more than one sample is removed from the data set were introduced in [14]. A method
specifically developed for artificial neural networks was proposed in [29]. Instead of starting
the training from scratch with each new training set, the weights from previous training
are kept and used as starting values for the next model.

5.6.3 Algebraic Estimates

The various methods of cross-validation require the data to be split in separate sets for
training and estimation of generalization error. This is often not possible to do when the
total number of data points is very limited or the data is very noisy (a large training set is
then necessary). However, a number of algebraic estimates of the generalization error exists,
and they work without any splitting of the data. They all impose prior assumptions on the
statistical error distribution. Some well known formulae are the Akaike Final Prediction
Error (FPE)

14+ Q
FPE = MSE - <1+N> (33)

=

and the Generalized Cross Validation (GCV):

1
GCV = MSE - —— (34)

Q)2
(1-%)

The MSE is the average squared error, computed for the whole data set of N points. The

methods work by penalizing the M SE with a term to compensate for the complexity of the

model. A sufficiently powerful model with many weights can fit, as is well known, any data

set. A low value of the M SFE is therefor not sufficient to guarantee a low generalization
error. The complexity is estimated by the number of free parameters Q).

In the case of neural network models, the value on @ is far from trivial! If the train-
ing is done with regularization such as early stopping, Tikhonov regularization or weight
elimination, the number of free parameters is not the same as the number of weights!

5.7 Controlling Model Complexity

As described above, the model complexity is intimately connected to the ”bias /variance
dilemma”. In powerful models such as neural networks with many weights, it’s often nec-
essary to impose some restrictions on the model in order to avoid too high model variance.
The methods used are often termed "regularization” and include techniques such as Ar-
chitecture Selection, Adding Noise to Data, Early Stopping and Tikhonov Regularization.
Tikhonov Regularization Theory applied to neural network training algorithms is described
in [11].

5.7.1 Architecture Selection in Neural Networks

The architecture of an ordinary feed-forward neural network is characterized by
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e The number of hidden layers.
e The number of hidden nodes.

e The set of non-zero weights.

The problem of finding the best number of hidden nodes and the best set of non-zero
weights can be approached in one of two ways:

e Network growth methods.

The network is gradually increased in size by adding hidden nodes until the best per-
formance is achieved. Such methods includes structure-level adaptation and cascade
correlation learning architecture [12].

e Network pruning methods.

The network is gradually decreased in size by either removing nodes (such as in
optimal brain surgeon OBS [17] and optimal brain damage OBD [24]), by removing
weights (such as in weight-elimination [43]) or by reducing weights (such as in weight-
decay[21]. Haykin provides a survey of these common methods in [19]. Moody [28]
presents some other common algorithms for control of the network complexity: the
Minimum Description Length (MDL) [31] and an information theoretic criterion [3].
Both methods work by adding a complexity term to the ordinary mean squared error
that is minimized in the training process.

Structure-Level Adaptation. In this method the network performance is monitored
after the training phase has been completed. If the estimation error is larger than a desired
value, a new node is added to the network, which is then trained again. If the weights
connected to the inputs of a node fluctuate extensively between successive training it may
be inferred that the node does not contribute to the function approximation and therefor
should be removed.

Cascade Correlation Learning Architecture. The procedure starts with an empty
hidden layer and an input and output layer determined by the specific problem at hand.
New hidden nodes are then added one by one. Each new node gets weights connecting it
to the input layer and to the existing hidden nodes. The new weights and some of the
old ones are trained repeatedly when each new node is added. New nodes are added until
satisfactory performance is attained.

Optimal Brain Surgeon (OBS) and Optimal Brain Damage (OBD). The basic
idea of these methods is to identify the weights whose deletion from the network will cause
the least increase in the value of the error function (normally the mean squared error).
This is achieved by a quadratic approximation of the error surface. The methods are very
computationally intensive and require inversion of the Hessian matrix for the network.
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Weight-Decay. The idea of Weight-Decay is to force weights to take values either close
to zero or relatively large. Add to the usual cost function a term which is a scaled sum
of all squared weights, and minimize this new sum in the training phase. For a neural
network with K weights and N examples in the training set, minimize the cost function

> ) —y(®)* + A ; w;. (35)

=1

The last term groups the weights of the network into two categories: those that have a large
influence on the mean squared error and those that have little influence on it. Weights that
have little effect on reducing the mean squared error will be penalized because of the last
term. Therefor, their absolute values will take values close to zero. On the other hand,
weights that have large effect on reducing the mean squared error will not be penalized,
since the last term is balanced by a hopefully greater reduction in the first term. The value
on A is crucial for a successful use of the method.

Weight-Elimination. The idea behind Weight-Elimination is simple: Add to the usual
cost function a term which estimates the number of significant parameters, and minimize
this new sum in the training phase. For a neural network with K weights and N examples
in the training set minimize

N 2/’[1]0

> () —y(t)* + Z

i=1 14 w?/w}’ (36)
The last term is an estimate of the number of significantly sized weights. ”Significant”
is defined by the choice of wy. For |w;| < wy the cost is close to zero. All significantly
sized weights will result in an extra cost and will therefor be penalized when the training
algorithm attempts to minimize the cost function. The choices of A and wy are crucial for
the method to work. Guidelines for selection of A can be found in [43].

Early Stopping. Early stopping is a method that addresses the complexity issue by
combining training and estimation of the generalization performance. It is normally used
for neural networks but could be also applied to other types of inductive learning techniques.
Weigend et al. [42] suggests setting part of the training data apart, introducing a cross-
validation set. The learning is done using the training set data but is stopped at the
point where the performance (e.g. mean squared error) on the cross-validation set has its
minimum. Therefor, this performance measure for the cross validation set is computed in
parallel with the ordinary training algorithm that attempts to minimize the mean squared
error on the training set data. The weights in the epoch (iteration) where the mean squared
error on the cross validation set has its minimum are regarded as optimal and selected for
the model. The produced model is then applied to the test set for a final estimate of the
generalization performance.

In [41] and [39] Weigend and Rumelhart perform an interesting analysis on how the effective
dimension of the hidden units in a neural network is changed during back propagation
training. The effective dimension is a measure of the complexity in the model that is
represented by the network at each instance during training. It turns out that the effective
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dimension starts at almost zero and gradually increases during training. This provides a
justification for the use of oversized neural networks and early stopping. The early stopping
should therefor be viewed as an architecture selection tool rather than an obscure method
that stops the regression before the actual minimum is reached.

6 Random Walk

Financial time series are often claimed to be a total or "near to” random walk. A random-
walk process is normally defined as

y(t) =yt —1) +alt) (37)

where y is the time series in question and a is an error term which has zero mean and
whose values are independent of each other. The change Ay(t) = y(t) — y(t — 1) is thus
a(t) and is hence independent of previous changes Ay(t — 1), Ay(t — 2).... It can also be
shown that (37) implies that even higher conditional moments of Ay (e.g. the variance of
Ay) are independent. This consequence has led to discussions about the validity of the
random-walk hypothesis as a theoretical model of financial markets [LeRoy 1989] and to
alternative formulations. One such formulation is the martingale which is defined as

Ay(t) = M+ D) —y(t=1) 9

y(t)

where D(t) is the dividend paid during period t. A stochastic process following (38) rules
out the conditional dependence of Ay, but not any higher moments of Ay, as shown in
Mills [27]. This is consistent with the observations that financial time series go through
quiet periods and also periods of turbulence. As Mills points out, this can be modeled by a
process in which successive conditional variances are autocorrelated but not with the more
restrictive random walk.

In any case, predicting stock prices is generally accepted to be a very difficult task. The
stock prices do behave very much like a random-walk process at least when you look at the
hit rates generated by most methods in use. Of course, this has direct implications both
on the prediction task, the evaluation task and the application task.

6.1 Predicting an Almost Random-Walk Series

The prediction task is impossible if the time series to predict is an absolute random walk. In
such a case any algorithm will produce 50% hit rate in the long run. The best we can hope
for is that the time series we attempt to predict has a "near to” random-walk behavior,
but with limited predictability. Degrees of accuracy of 54% hit rate in the predictions are
often reported as satisfying results for stock predictions [37, 5].
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6.2 Evaluating Prediction Algorithms for Almost Random-walk
Series

The purpose of evaluating a prediction algorithm is to produce an answer ”Yes” or ”"No”
as to whether the algorithm really has predictive power. The evaluation task is directly
effected by the relatively low degrees of accuracy that can be expected, even from a ”suc-
cessful” model. Some simple statistical exercises show the situations that may arise when
trying to evaluate a prediction algorithm.

6.2.1 Scenario 1:

Assume that we are predicting a stock time series consisting of equal numbers of moves up
and down during one year of 250 trading days. This is a realistic assumption. The average
up/(up+down) ratios for a large number of Swedish stocks are in [20] shown to be between
50% and 51%.

For each day apply a totally random prediction algorithm. The algorithm simply produces
a ”1” (predicted move up in stock price) and a ”0”(otherwise) totally at random. The
probability that z predictions are correct is given by

250

P(hit rate = z) = (
x

>0.5$ % 0.5%0°7, (39)
This means that P(hit rate < z) follows the binomial distribution binom(250,0.5) and
therefor

P(hit rate > ) = 1 — P(hit rate < z) = 1 — binom cdf(x,250,0.5).  (40)

Here binom cdf denotes the binomial cumulative distribution function. Insertion of x =
0.54 * 250 = 135 yields P(hit rate > 135) = 0.092 as the probability that the random
prediction algorithm gives a hit rate higher than 54%. Thus we are running a 9% risk
of classifying the random algorithm as a useful predictive model. This corresponds to
what statisticians call a " Type II error”, i.e. accepting a false hypothesis. Lowering the
required hit rate limit to 52% hit rate would increase the risk for a Type II error to
1 — binom cdf(0.52 % 250, 250, 0.5) = 24.33. Not a very advisable thing to do as it looks!

6.2.2 Scenario 2:

Assume that we are evaluating technical indicators that produce sell and buy signals at an
average rate of once a week. We have selected one hundred different indicators and want to
do a proper test and decide if any of them has a predictive power which we define to be a
hit rate of > 55%. For a test period of 10 years we get 500 predictions from each indicator.
They are compared with the actual stock chart and hit rates for the indicators that are
computed. What’s the probability that a random indicator slips through this test?

As before, we can compute the probability that a purely random indicator produces = or
fewer correct signals (hits) when applied to a stock: P(hit rate < z) follows the binomial
distribution binom (500, 0.5) and thus

P(hit rate > ) = 1 — P(hit rate < z) = 1 — binom cdf(x,500,0.5).  (41)
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We compute P(hit rate > 0.55%500) = 0.0112 as the probability that a random indicator
gives a hit rate higher than 55%. But since we started off with 100 different indicator series
we must calculate the probability that we falsely accept ANY of the 100 random indicators!
This risk is 1 — (1 — 0.0112)'% which calculates to 68%. It should be noticed that there
are many hundreds of suggested indicators and rules, which are claimed to really predict
future stock prices. In the light of what we have just seen, the mere selection of one of
these indicators based on its past performance is statistically totally unacceptable.

6.2.3 Why Do We Get These Results

The primary reason why we may get results like the ones shown above is that the limits
set for accepted prediction hit rates are too low. Increasing them to e.g. 60% would
give considerably safer results. However, the problem would then be to find prediction
algorithms that really produce such high hit rates for the required test period. The reason
why so many papers present hit rates in the region below 55% may be simply that the
prediction task is impossible (at least with the reported method) and the only way to get
results that seem to be significant is to keep the required hit rate on a level where even a
random predictor would produce them!

Scenario 2 above also pinpoints another important issue to bear in mind, especially when
selecting a best performing algorithm or technical indicator. The dramatic increase to 68%
in Scenario 2 is due to the fact that the selection is done in sample. Given enough number
of different indicators it would be possible to find one with any hit rate. It corresponds
to overfitting a powerful model to a set of data points. The conclusion is that a test set
of data points must be kept untouched during the entire parameter estimation and model
selection process. Although this may sound trivial, it is in fact very difficult to fulfill
completely. Model selection is in effect even after the test results have been published
since good prediction results probably get more attention than bad ones. For a thorough
analysis of related problems refer to [25].

6.3 Guidelines for Developing Prediction Algorithms

The predictions of time series with near random-walk behavior emphasize some issues that
should be considered when developing a prediction system:

e Ensure high data quality since a few errors in the input data may very well cause
misinterpretations of the results in either direction. Watch out for outliers in the
data.

e Handle missing data correctly. When analyzing hundreds of time series with daily
data for many years it is unavoidable to have missing data points. Besides being
a problem in the actual inference machinery, the missing data may also introduce
unwanted biases when analyzing the output results. The easy way of removing the
missing data before doing the analysis is not always advisable, e.g. when a set of
stocks is analyzed in parallel. The individual stock time series often have missing data
at different locations, which will result in a rather mangled data set after removal of
all points where any of the stock data is missing. A better approach is to make the
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algorithm accept missing data and to do as well as possible when parts of the input
data are missing.

e When predicting one step ahead, make sure you are really doing that! ”Off by one”
errors are seldom more fatal than in this case.

6.4 Guidelines for Evaluating Prediction Algorithms

The near random-walk behavior also calls for extreme precaution when evaluating the
outputs from a developed prediction system. As has been pointed out earlier, the risk of
interpreting random fluctuations as results of a successful prediction algorithm is always
present and is sometimes surprisingly high. We propose the following guidelines for the
testing and evaluation of prediction algorithms that are parts of a trading system:

e Beware of the data-snooping problem. Ensure that all parameter tuning, data selec-
tion and algorithm selection are done in sample. Do not involve the test data.
The final evaluation on the test data set should be the last operation in the whole
development cycle 3. Experience shows that this is as difficult as it is important!
The outstanding solution is to add a final test of the algorithm on data that simply
didn’t exist at the time of the development. In this way a true estimation of the
predictability is achieved.

e Test the predictions on as much data as possible; on many stocks and for long time
periods.

e Divide the available time period into smaller periods (e.g. annual) and perform the

evaluation on these smaller parts as well as on the total time period. The purpose is
threefold:

1. The statistical level of significance is increased by evaluating many samples
instead of one grand total.

2. Tt is common that financial prediction algorithms turn out to depend on global
properties such as long time trends or cyclic behavior in the time series. By
splitting the data, such biases can be revealed.

3. The variance of the prediction accuracy is estimated. It is important to realize
that a prediction system that produces a massive loss during its first year in
operation will be most likely scrapped, probably along with the developing team.

e Test the prediction algorithm on random-walk time series. If you manage to predict
random walk, there is either a bug in the program or a weak evaluation procedure.
Two tests can be performed:

3The publication of new methods is very much a part of the development cycle (evaluation). To be
strict, the only way to avoid data snooping would be to publish all proposed prediction algorithms, and
to propose all tested ones...
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1. Generate and test the same amount of random data as the available real data.
Repeat the testing several times (with different random ”seeds”) and record
the test performance. By observing the spread between the different runs and
the results from the real data prediction, the significance of the latter can be
estimated.

2. Test the algorithm on a huge random test data set. The prediction results should
converge to zero predictability (zero profit and 50% hit rate) as the size of the
test data set increases.

e Use proper benchmarks. If a highly sophisticated and complicated prediction algo-

rithm does not out-perform the naive prediction method, the application (or pub-
lication) of the algorithm should be taken under consideration. Likewise, a total
accumulated profit below the "buy and hold” profit implies that the algorithm is
rather useless as a real trading tool.
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