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Market Microstructure and
Stock Return Predictions

Roger D. Huang
Hans R. Stoll
Vanderbilt University

To what extent are the empirical regularities
implied by market microstructure theories useful
in predicting the short-run bebavior of stock
returns? A two-equation econometric model of
quote revisions and transaction returns is devel-
oped and used to identify the relative importance
of different microstructure theories and to make
predictions. Microstructure variables and lagged
stock index futures returns bave in-sample and
out-of-sample predictive power based on data
observed at five-minute intervals. The most strik-
ing microstructure implication of the model, con-
JSirmed by the empirical results, specifies that the
expected quote return is positively related to the
deviation between the transaction price and the
quote midpoint while the expected transaction
return is negatively related to the same variable.

The burgeoning literature on the microstructure of
securities markets contains substantial evidence of
systematic behavior in the short-run pattern of stock
prices. Prices exhibit reversals as they bounce between
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bid and ask quotes [Roll (1984), Stoll (1989)]. Specialists, motivated
by inventory costs and fears of adverse information, adjust quotes in
a complex response to the evolution of observed transactions [Has-
brouck (1988, 1991), Hasbrouck and Ho (1987), Madhavan and Smidt
(1991), Petersen and Umlauf (1991)]. Prices of individual stocks appear
to adjust with a lag to price changes in the index futures contract and
in certain stock segments, even after controlling for the infrequent
trading problem [Stoll and Whaley (1990), Lo and MacKinlay (1990)].
Tests of scientific theories lie in their predictive power. Yet, surpris-
ingly few attempts have been made to determine the ability of micro-
structure theories to predict the very short-run behavior of stock prices.
We construct an econometric model of quote revisions and stock-
price changes that incorporates the various theories of the market
microstructure and use the model to make predictions.

The model and our empirical tests distinguish this article in several
ways from other microstructure research. First, the model integrates
the determinants of quotes and transaction prices in a two-equation
framework that we use to identify the relative importance of different
microstructure theories. We also test cross-equation restrictions that
are implied by microstructure theory. The empirical results support
both the adverse selection theory of the bid-ask spread and the inven-
tory theory. The results show that price quotations adjust as predicted
to reflect the adverse information conveyed by the last trade. Prices
of stocks also exhibit reversals that compensate providers of imme-
diacy for inventory and order-processing costs.

Second, the model is used to predict five-minute quote revisions
and transaction returns on the basis of microstructure variables and
lagged stock index futures returns. We make out-of-sample predic-
tions and compare the mean-squared error of our forecasts to naive
forecasts. Our results indicate that short-run quote and price changes
are predictable on the basis of information available when the pre-
dictions are made, including the lagged stock index futures return.
However, profitable arbitrage opportunities are not necessarily implied
since transaction costs probably overwhelm the potential profits for
most investors. Nevertheless, the evidence of predictability can be
useful to investors interested in minimizing trading costs and to mar-
ket makers interested in setting optimal quotes.

Third, a useful feature of the model and the empirical specification
is that it is straightforward to implement. The model is linear and the
use of data observed at five-minute intervals is sufficient to capture
past return behavior without an elaborate lag structure.

In Section 1 we develop an empirical model of quotations and
transaction prices. The data are described in Section 2. In Section 3,
we examine bivariate relations between the variables used in the
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model and returns for quotes and transaction prices. Section 4 con-
tains the principal empirical results of the article. In Section 5, we
analyze the model’s out-of-sample predictive power. The article ends
with conclusions in Section 6.

. An Empirical Model of Quotations and Transaction Prices

Let g, be the logarithm of the average of bid and ask prices quoted
just prior to a trade and let p, be the logarithm of the transaction
price. Define

b=q + z. @9)

where z, is the deviation of the log of the observed transaction price
from the log midpoint of the quotes and can be thought of as one-
half the effective bid-ask spread expressed as a proportion of the
quotes’ midpoint. The effective spread is less than the quoted spread
because transactions may take place inside the quoted spread. Public
purchases (dealer sales) results in z, > 0. Public sales (dealer pur-
chases) results in z, < 0. In our empirical work, the minimum sam-
pling interval is five minutes. First differencing Equation (1) yields

re=ri+z— z_,, (2)

where r? = p, — p,_, and r? = ¢, — q,_,. As stated, definition (1) or
(2) lacks empirical content. We develop a testable model by speci-
fying the quote setting behavior for ¢ and the process generating
2.

1.1 Illustration of microstructure effects

Before detailing the empirical model, we illustrate in Figure 1 the
four market microstructure effects we seek to capture. At time ¢ — 1,
the bid price, B, and the ask price, 4, are assumed to bracket the
unobservable consensus price, p*, so that g,_, = p¥ .. The consensus
price of the stock is the price that reflects all public information
(including the price and quantity of the last trade) and that would
arise in the absence of trading costs.! For concreteness, assume that
the half-spread has a value of 3 (eighths) composed of an adverse
information component of 1, an inventory holding cost component
of 0.5, and an order processing component of 1.5. The adverse infor-
mation component, modeled in Glosten and Milgrom (1985) and
Copeland and Galai (1983), reflects the expected value of the private
information conveyed by a public seller or public buyer. The inven-

' The concept of a consensus value that is unobservable and at which no transactions may occur is
also used by Glosten and Milgrom (1985, p. 77) and others.
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order processing cost =15
3.0

Figure 1

Illustration of quote adjustment at time ¢ subsequent to a transaction at the bid at time
t—1

Spread is held constant at 6. A = ask price, B = bid price, g = quote midpoint, p* = unobservable
consensus price, and z = difference between trade price and quote midpoint. Numbers in paren-
theses denote price changes between ¢ — 1 and .

tory holding cost component, modeled in Stoll (1978) and Ho and
Stoll (1981), reflects the return required to compensate dealers for
accumulating unwanted inventory. The order processing component
compensates dealers for the costs of processing trades, such as the
costs of communicating, clearing, and record keeping.

Assume that a public sale takes place at the bid price at time ¢ —
1, so that z,_, = —3. Microstructure theory provides predictions for
subsequent changes in bid and ask prices. Also assume that the spread
remains constant, a result that is implied by some theories, but is not
necessary in our empirical work. The first microstructure effect we
model is the adverse information effect. Under this effect, 4 and B
will be lowered to reflect the expected value of the private information
conveyed by the public sale, or —1 under our assumption. The con-
sensus price changes by one-third the value of z,_, or by —1.

The second microstructure effect we model is the inventory effect.
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Under this effect, 4 and B are lowered by an additional amount that
provides compensation for the risk of holding inventory, changing
the quote midpoint, g, relative to p* by —0.5. The half-spread remains
at 3.

The third microstructure effect we capture is the order processing
cost. Providers of immediacy recover their costs of trading and pro-
cessing orders by buying at the bid and selling at the ask, thus profiting
from the bid-ask spread. If the only source of the spread were the
order processing cost, the spread would be 3. Given equal probabil-
ities of purchases and sales, the expected revenue of the dealer would
be 1.5, which is one half the spread and just sufficient to cover order-
processing costs.

In the figure, the spread of 6 reflects the presence of adverse infor-
mation and inventory costs as well as order-processing costs. Given
the downward adjustment of 4 and B after a public sale at time ¢ —
1, market-maker revenues are 4.5 if the trade at time ¢z occurs at 4 and
—1.5 if the trade at time foccurs at B. Assuming a one-period horizon,
dealers must, in equilibrium, earn expected revenues of 2 to cover
order-processing costs of 1.5 and inventory-holding cost of 0.5. The
expected revenue is therefore

E(Rev) =457 + (1 — 7)(—1.5) =2,

where 7 is the probability of a public purchase and 1 — = is the
probability of a public sale at time # The value of 7 that is consistent
with equilibrium is therefore = = 0.583.

Note that in this illustration the expected revenue on a trade is
one-third the spread. If the only source of the spread were adverse
information, the spread would be 2, bids and asks would change to
reflect the information conveyed by trades, but the expected revenue
on a trade would be zero. If the only source of the spread were the
inventory-holding cost of 0.5, the spread would be 1, bids and asks
would change to induce changes in order arrivals, and the expected
revenue on a trade would be 0.5.2

The fact that the probability of a public purchase differs from 0.5
illustrates the fourth market microstructure effect we seek to capture,
namely, an induced order arrival effect. The probability of a public
purchase changes through time as dealer price adjustments change
q with respect to p*. More formally, the induced order arrival effect
states that

Prob[z, > 0| (p¥ — g) > 0] > 0.5.

* Articles that seek to separate the influence of inventory effects, order processing effects and infor-
mation effects include Glosten and Harris (1988), Stoll (1989), Hasbrouck (1991), George, Kaul,
and Nimalendran (1991), and Sirri (1990).

183



The Review of Financial Studies /v 7n 1 1994

Since p* is unobservable, we specify a proxy to measure the induced
order arrival effect. The divergence of g from p* depends on the
inventory holdings of suppliers of immediacy. The levels of inventory
in turn depend on the observed sequence of buys and sells as proxied
by past values of z. In the two-period setting depicted in Figure 1,
the value of past z is —3, and the price adjustment, motivated by the
past accumulation of public sales, increases the probability of future
public purchases from 0.5 (when g,_, = p¥,) to 0.583 (when g, =
p¥ — .5); that is?

Prob(z,= 3| z,_, = —3) = 0.583.

Thus, dealer pricing to equilibrate inventory induces negative serial
correlation in transaction arrivals. However, other factors, such as
investors’ trading demands and trading mechanics, may induce pos-
itive serial dependence in order arrivals. For example, Easley and
O’Hara (1987) argue that adverse information can induce positive
serial dependence in orders. Limitations on transaction size at posted
quotes may also cause trades to be split up into a sequence of buy
or sell orders.

1.2 Quote revisions

We now return to a detailed specification of inventory, information
and other effects in our empirical model. The quote return, r¢, in
Equation (2) can be decomposed into an expected consensus return,
an inventory effect and an unexpected component as follows:

ri= E[r’tk | Qt—1] + g(AI:—l) + €, (3)

E[-]-] is the conditional expectations operator, r¥ is the consensus
return, Q,_, is the public information set available just after the trans-
action at ¢ — 1, and ¢, represents the change in the quote midpoint
due to the arrival of new information after the quote at ¢+ — 1. The
function g(AI,_,) captures the effect of inventory change on the quoted
return.

To incorporate the information effects, the expected component in
Equation (3) can be conditioned on a subset of the available infor-
mation by the law of iterated expectations. Specifically, we focus on
the variable z,_, and the change in the logarithm of the S&P 500 index
futures price, /_;:

E[r)tk | €01] =f(Z,_1, ri_y). 4)

3 In practice, this probability directly affects the inventory holding cost set by the market maker.
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We restrict the specification to a single lag because experimentation
indicates that more distant lags provide little additional explanatory
power.*

The z,_, term is included to determine if market makers adjust
quotes on the basis of private information revealed through trading.
Glosten and Milgrom (1985) show that, when the only source of the
bid-ask spread is private information, the quote’s midpoint is adjusted
by z,_, because the preceding price deviation is the expected value
of the private information conveyed by the trade. In our empirical
model, we permit the quote to be adjusted by some fraction of z,_,
in accordance with the presence of additional microstructure effects
as illustrated in Figure 1.

The lagged change in futures prices is included to account for
possible lags in the response of quotes to public information. Since
trading in stock index futures is less costly than trading in stocks,
general economic news may induce trading in index futures before
inducing trading in individual stocks. If limit orders and specialist
quotes are not adjusted instantaneously due to structural impediments
as noted by Miller (1990), lagged index futures returns may have
predictive power. Stoll and Whaley (1990) provide evidence that
stock index futures lead stock indexes and IBM stock prices.

As seen in Figure 1, inventory changes may cause the market maker
to adjust the quotes relative to the consensus price implied by public
information.® In practice, the representation of inventory effects is
complicated by the fact that the inventory of the specialist and other
traders that act like market makers is not public information. It is
reasonable to assume, however, that the inventory change at time ¢
— 1 is given by the cumulative signed share volume of the trades
since the last observed trade at ¢ — 2, a variable we denote as Q..
Public sales (dealer purchases) are given a negative sign and public
purchases (dealer sales) are given a positive sign. We identify a public
sale as a trade with a price below the quote midpoint and a public

* Instead of focusing on economic determinants in a structural setting as we do, an alternative
approach is to rely on the information in the autoregressive lag structure of quotes or prices [see,
for example, Hasbrouck (1991)).

> We use the terms “market maker,” “‘dealer,” and “supplier of immediacy” more or less inter-
changeably. While we identify each of these terms with the specialist, other traders often perform
the same function. Traders other than the specialist can act like market makers by placing limit
orders or by standing ready to trade in “the crowd.” Thus, our single market maker really represents
a group of traders that provide immediacy (among which the specialist is most central).

¢ However, see Madhavan and Smidt (1991), who examine inventory data made available by a
specialist.

7 Under the inventory theory, the bid and ask prices (relative to the market maker’s opinion of the
“true” price) are related to inventory levels; but changes in bid and ask prices are related to changes
in inventory, that is, volume. Since our interest here is in price changes, volume is appropriate.
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purchase as a trade with a price above the quote midpoint.® Under
the convention that public sales (dealer purchases) produce negative
Q.. and public purchases (dealer sales) produce positive Q,—,, cumu-
lative signed volume should have a positive influence on quote revi-
sions.

We also account for the inventory effects of large orders by large-
block indicator variables.? Let V,_, be share volume of the trade at
time ¢ — 1 and define the indicator variables

4.=1 if z,_, > 0and V,_, > 10,000,
=0 otherwise,
5. =1 if z,_, < 0and V,_, > 10,000,

=0 otherwise.

The impact on quote revisions is expected to be positive for L%, and
negative for LZ ;.

Our empirical specification illustrates the practical difficulties of
isolating inventory effects and information effects on the quotes. Spe-
cifically, the variable z,_, is included to convey information about the
direction of last period’s trade, but it is also used in signing the
cumulative volume, Q,_,. In addition, the large-trade indicator vari-
ables might represent an information effect as well as an inventory
effect.

We also include two additional variables motivated by the joint
presence of information and inventory effects. The first variable is the
difference between the logarithm of the quoted volume at the ask
(depth at the ask) and the logarithm of the quoted volume at the bid
(depth at the bid), D,_,."° An inventory effect would predict a positive
impact on quote changes, but the impact would be negative if a
signaling effect dominates. The inventory effect is predicated on the
assumption that a dealer adjusts both quotes and depth to encourage
transactions that equilibrate inventory. Under the inventory effect, a
dealer who has a large inventory at time ¢ — 1 simultaneously lowers
quotes and raises depth at the ask at time ¢ — 1 to attract buyers."

* The signing procedure we follow has been used by Hasbrouck (1991) and others.

° An alternative to a separate large block indicator variable is to capture the effect of large trades in
Q... However, for our data sets, a log transformation of Q,, did not increase the statistical sig-
nificance of the variable and, in addition, introduced multicollinearity that had not existed before.
For a detailed examination of the reaction of quotes to large orders see Sirri (1990).

1 The specialist has discretion over the depth levels that he reports. The depth may reflect the depth
on the book rounded up, or may also include trading interests by the specialist and the crowd.

' The discrete nature of price changes may also cause the market maker to adjust the depth variable
as a substitute for a quote change smaller than the standard eighth of a dollar. For evidence that
quotes and depth move together, see Lee, Mucklow, and Ready (1993).
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Since prices are low at time ¢ — 1, there is a higher probability of a
positive than of a negative return from ¢ — 1 to ¢, therefore, positive
association between r¢ and D,_, results under the inventory effect.'?
Under the signaling effect, large depth at the ask attime ¢ — 1 indicates
the presence of sellers on the limit order book, which induces market
participants to revise quotes downward at time ¢ therefore, negative
association between r¢ and D,_; results under the signaling effect.
Another effect is the barrier effect that yields the same prediction as
the signaling effect. Large depth at the ask relative to the bid creates
a barrier to price increases relative to price decreases, which will tend
to induce price decreases. If orders arrive more or less randomly, the
buying power at the bid is more likely to be exhausted (thereby
causing a decline in the bid) than the selling power at the ask (thereby
causing the ask price to remain unchanged).

The second variable is the lagged quote revision, 74 ,. This variable
may provide useful information in an imperfect world of noninstan-
taneous quote revisions due to limit orders, stabilization rules, and
transaction costs. If quotes are slow to adjust, the lagged quote return
would have a positive effect on the subsequent quote return. Alter-
natively, the past quote return could capture inventory effects that
induce negative serial correlation in quote returns. Negative serial
correlation would arise from the quote adjustments made by market
makers in order induce inventory equilibrating trades.

Specification (3) is now expressed as a linear function of the infor-
mation and inventory variables to produce a quote revision rule:

ri=a,+ a;ri, + a,;ri_, + aiz,_,
+ a,Q,_, + aslt |, + ad®, + a,D,_, + e, (5)

1.3 Price prediction

Equation (2) shows that the price prediction rule can be obtained
by combining the quote revision rule with the generating process for
z,. We allow z, to depend on the past observed value of z, to capture
characteristics of the order arrival process induced by inventory effects
and other effects. Specifically, we posit

zZ,=pz—, + u, (6)

where p is a parameter and u, is the order arrival shock. If the prob-
ability of a purchase or a sale is independent of the past sequence of
trades, p = 0. In the Easley and O’Hara (1987) model with asymmetric
information or in a world with institutional rigidities that cause trades

* The depth variable potentially reflects an inventory level effect, whereas Q, reflects an inventory

change effect associated with the last trade.
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to bunch, positive correlation between the present and past z, is
predicted, that is p > 0. If dealer pricing induces inventory equili-
brating trades, we expect p < 0.

Combining Equations (2) and (6) leads to

re=ri+ (p— Dz, + u, @
Substitution of Equation (5) into Equation (7) then results in

r?=a, + a;ri_, + azr{—l + a§Z1—1
+ a,Q + asli, + all?, + a,D._, + e, (8)

where a4 = af + p — 1 and e, = ¢, + u,. The generating process for z,
as specified in Equation (6) permits a decomposition of the coefficient,
a4, into three microstructure effects. The first component, a4, represents
the asymmetric information effect. We expect this component to be
positive and to represent the information conveyed by the last trade.
The second component, p, represents the induced order arrival effect
modeled by Equation (6). The third component, —1, represents the
bid-ask bounce effect. In the absence of information or order arrival
effects, the coefficient of z,_, in Equation (8) would be —1, reflecting
the tendency of price returns to be negatively serially correlated. For
example, a coefficient of —1 is implied by Roll's (1984) model. In
Roll’s model, bid and ask quotes are not adjusted to manage inventory
or to incorporate information conveyed by a trade. The bid-ask bounce
simply compensates the dealer for the cost of processing the order.
The bid-ask bounce effect is also evident in Equation (2). If r¢ is
independent of z,_,, and if the 2’s are serially independent, a coefficient
of —1 is implied for z,_,. Quote revisions attenuate this negative serial
correlation in price returns but are unlikely to eliminate it.

Equations (5) and (8) can be viewed primarily as equations for
predicting stock returns in the short run on the basis of microstructure
theory and other variables. Equation (5) predicts the quote’s midpoint
return, which can be thought of as the inventory-adjusted equilibrium
return. Equation (8) predicts the transaction price on the basis of an
adjustment for the bid-ask bounce around the quoted return and for
induced order arrival.

1.4 Hypotheses

Our model incorporates various market microstructure theories that
are not necessarily mutually exclusive. Following is a summary of the
restrictions imposed on our model by each of the theories.

Order processing theory: af = 0, a = —1. In this, the simplest of
the spread models, quotes are not adjusted and prices bounce between
the bid and the ask.
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Adverse information theory: af = 1, a4 = 0. In the pure adverse
information theory of Glosten and Milgrom (1985) and Copeland and
Galai (1983), quotes are adjusted to reflect the information contained
in the last trade, z,_,, but the expected transaction price change does
not depend on z,_,.

Inventory holding cost theory: 1 > a¢{> 0,0 > a4 > — 1, a, >
0. In the pure inventory holding theory of Stoll (1978) and Ho and
Stoll (1983), quotes are adjusted in the same direction as the prior
trade, and prices tend to bounce back. Additionally, quote returns
are adjusted by an amount that depends on the inventory change,

Q-1

Induced order arrival effect: p < 0, ¢, < 0, a, > 0. An implication
of inventory theories is that order arrivals are influenced by changes
in the quote midpoint, leading to negative serial correlation in z, that
is p < 0. The same effect is also captured in the coefficient of rZ,
since one expects successive quote returns to be negatively correlated
if quotes are adjusted to equilibrate inventory. If depth is used to
encourage order arrivals that equilibrate inventory, one expects a, >
0. Alternatively depth may provide a signal or act as a barrier, in which
case a, < 0.

Large trades: a; > 0, a; < 0. Both the adverse information theory
and the inventory theory imply a positive value for as and a negative
value for aq.

Our sole nonmicrostructure variable, lagged stock index futures
return, has implications for market efficiency.

Efficiency of futures and stock market: o, = 0. In an efficient stock
market, one expects stock quotes to reflect the information contained
in stock index futures prices. This implies that the futures return has
no predictive power in both the quote and price equations; that is,
a, = 0.

Finally, the two-equation model imposes testable cross-equation
constraints. It implies that all the microstructure coefficients in the
quote equation are equal to their counterparts in the price equation
with one exception. The exception is that the coefficients of z,_, in
the quote and price equations be of opposite sign.

Cross-equation restrictions: a,, a,, as, as, a, coeflicients are the
same for both quote and price equations.
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Data

Data for this study are taken from the transactions data files compiled
by the Institute for the Study of Security Markets (ISSM). The analysis
covers 20 actively traded stocks constituting the Major Market Index
over all trading days in calendar year 1988. We take two measures to
correct for the possibility that trades and quotes are not reported in
the sequence in which they occurred. First, because quotes are
reported more quickly than trades, we adjust the time of quotes rel-
ative to trades.’ If the time of quote is five seconds or less prior to
the time of trade, we place the time of quote immediately after the
time of trade. Second, we divide the trading day into 78 five-minute
intervals and take an observation from each interval. We expect data
taken at five-minute intervals to be in the correct time sequence. From
the perspective of predicting returns, the five-minute criterion is con-
servative since market participants have access to more data than we
use.

We report the results based on two data sets for each of the 20
stocks. The first contains current quotes and current trades and the
second contains standing quotes and current trades. For each data
set, we begin by retaining the last transaction price in the five-minute
interval. If a transaction price is not available in the interval, the
interval is excluded. We next determine the bid-ask quote preceding
the transaction price (after having made the five-second adjustment).
In the data set we call “current quotes and current trades,” we retain
only those intervals in which a quote appeared in the same interval
asatransaction price. Quotes are recorded if a bid or ask price changes
or if the quantity bid (depth at the bid) or offered (depth at the ask)
changes. This data set has the advantage of maximizing variability in
the variables of interest—quote and price returns. It has the disad-
vantage that intervals in which quotes are not revised are ignored.
Since no news may still be news, we also test our model on a broader
data set we call “standing quotes and current trades.” In this data
set, all intervals containing a trade price are retained for which a prior
quote is available in the same day.

We also retrieve the stock transaction size in shares (which is
recorded at the same time as the price) and the number of shares
offered at the ask and sought at the bid (depth at the ask and at the
bid, which are recorded at the same time as the quotes) from the
ISSM data. If these data were missing, the five-minute interval is
excluded. In addition, we collect the last stock index futures price
in period ¢ — 1 that precedes the transaction price in period ¢ — 1

¥ See Lee and Ready (1991).
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by at least five seconds.’* The stock index futures price is the price
of the nearby S&P 500 futures contract. We switch from the nearby
contract to the next maturity on the second Friday of the expiration
month. Tick by tick data were kindly provided by the Chicago Mer-
cantile Exchange. S&P 500 stock index futures are actively traded
with the result that data for this variable are always available for the
five-minute sampling intervals.

For each data set, returns are calculated from the price observation
in one five-minute interval to the price observation in the next five-
minute interval. If a five-minute period is excluded, the return spans
more than five minutes. On the basis of past returns and other past
data, predictions of quote returns and price returns are made to the
following interval. Overnight returns are excluded from the analysis,
and no attempt is made to predict overnight returns.®

Our sample includes a few very large transactions that can be traced
to dividend capture trading strategies (for example, a trade of 7,500,000
shares in Sears on May 26, 1988). Dividend capture trading results in
the offsetting purchase and sale trades executed at the same time but
with different settlement dates spanning the dividend ex date. These
are wash trades that are not influenced by the factors we are inves-
tigating. As a result, we exclude intervals in which we could identify
the presence of a large dividend capture trade.'

Table 1 contains summary statistics for the stocks in the sample. A
list of the company names and their ticker symbols is provided in the
Appendix. The total number of possible five-minute intervals in 1988
was 19,734. In the case of current quotes and current trades, which
we will refer to as data set A4, the number of observations per stock
ranges from a high of 15,736 to a low of 5471, with an average of 8926
per stock. In the case of standing quotes and current trades, which
we will refer to as data set B, the number of observations ranges from
a high of 16,355 to a low of 12,561, with an average of 14,464 per
stock.

" This procedure ensures that information contained in the futures price at time ¢ — 1 has time to
be reflected in the stock price at time ¢ — 1 (if the two markets react to information at the same
time).

> To check on the robustness of our results, we also use two analogous data sets for current and
standing quotes that are confined to five-minute returns and revisions. These extensions produce
comparable conclusions to those reported in the article.

¢ Dividend capture trading is examined by Choe and Masulis (1991). They kindly provided us with
a list of large trades that specified nonstandard delivery. Dividend capture trading involves two
sets of trades at about the same time, one for standard five-day delivery and one for nonstandard
delivery. We deleted any nonstandard trade or a trade for the same volume observed in the same
interval or in one of the two adjacent five-minute intervals. This rule caused us to delete a total of
18 large trades. The number of deleted trades are indicated in parentheses next to each ticker
symbol: AXP (1), CHV (1), DOW (1), EK (1), GM (6), S (1), T (3), X (2), XON (2). We were
unable to remove all dividend capture trades since we were not always able to identify an offsetting
trade to a nonstandard trade.
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Table 1
Summary statistics of 20 MMI stocks

Statistic N ra re r/ | 2] |4 DA DB L4 e

A: Current quotes and current trades
Ave (p) 8926 —0.001 —0.001 —0.001 0.118 224 1073 95.2 0.020 0.016
Ave (o) 0.207 0.250 0.151 0.091 823 105.0 92.0 0.133 0.124
Min 5,471 —0.003 —0.004 —0.002 0.049 13.2 35.6 31.7 0.007 0.006
Max 15,736 0.002 0.002 —0.001 0.206 36.3 447.2 3954 0.047 0.031

B: Standing quotes and current trades
Ave () 14,464 —0.001 —-0.001 —0.001 0.116 21.6 1179 104.7 0.019 0.016
Ave (o) 0.161 0.216 0.118 0.090 109.0 110.2 964 0.132 0.124
Min 12,561 —0.002 —0.002 —0.001 0.049 13.0 379 33.7 0.008 0.006
Max 16,355 0.001 0.001 —0.001 0.207 314 507.8 452.1 0.042 0.030

The four rows contain the average of the means, the average of the standard deviations, the
minimum, and the maximum values. N denotes number of observations, r7 denotes quote return,
r? denotes price return, r/denotes return on S&P 500 index futures, |z| denotes absolute difference
between logarithm of transaction price and logarithm of quote’s midpoint, Vdenotes trade volume,
DA denotes depth at ask, DB denotes depth at bid, L, is the indicator variable for public buys
that exceed 10,000 shares, and L%, is the indicator variable for public sales that exceed 10,000
shares. The means and standard deviations of r4, r#, r/, and z are multiplied by 100.

As expected, the standard deviation of returns based on quote mid-
points is less than the standard deviation of returns based on trans-
action prices (0.207 percent versus 0.250 percent for data set 4 and
0.161 percent versus 0.216 percent for data set B). The standard devi-
ation of the return of the index futures contract (0.151 percent in
data set 4 and 0.118 in data set B) is always less than the standard
deviation of quote returns or price returns of any stock. This is expected
since the index futures contract represents a portfolio. The ranking
of the standard deviation of quote returns, price returns, and futures
returns holds for each stock as well as for the averages shown in Table
1. Also observable in Table 1 is the higher variability of returns in
data set A4 than in data set B. This reflects the fact that data set A
includes those intervals in which quotes were revised. A quote revi-
sion is more likely if prices are changing.

The absolute value of z, which is the deviation between log of the
transaction price and the log of the quote midpoint, is one-half the
proportional effective spread. The proportional effective spread is less
than the proportional quoted spread because transactions can occur
inside the quotes. For data set 4, the mean of |z| ranges from a low
of 0.049 percent (for IBM) to a high of 0.206 percent (for American
Express), with an overall average of 0.091 percent. The means are
virtually identical for data set B. The effective spreads of 0.098 percent
for IBM and 0.412 percent for American Express compare to quoted
spreads of 0.146 percent and 0.664 percent respectively for these same
stocks. Given the average prices for IBM and American Express of
$116.5 and $26 respectively, the average effective spreads are 11.4
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cents and 10.7 cents per share while the average quoted spreads are
17.01 cents and 17.26 cents per share.'”

The average transaction size of the sampled trades, V, averages 22.4
round lots in data set A and 21.6 round lots in data set B. The average
number of round lots ranges from 13.2 to 36.3 in data set A and from
13 to 31.4 in data set B. In data set A (B), Johnson and Johnson
(Johnson and Johnson) is the stock with the lowest average trade size
and AT&T (American Express) is the stock with the largest average
trade size.

The average depth at the ask, DA, ranges from a low of 35.6 round
lots (Johnson and Johnson) to a high of 447.2 round lots (AT&T) in
data set A.'® Comparison of the DA and DB columns shows that the
grand average depth at the ask exceeds the grand average depth at
the bid, something that holds for almost every stock in our sample.
A comparison of depths for data set A and data set B indicates that
depths are smaller in the more volatile data set A periods.

The last two columns represent the proportion of a stock’s sampled
transactions exceeding 10,000 shares. Block trades in excess of 10,000
shares at the ask or the bid are quite rare. In data set 4, the stock
with the maximum proportion of purchase (sale) blocks has a block
purchase (sale) in 4.7 percent (3.1 percent) of the sampled trades.
The stock with the minimum number of blocks experiences block
purchases in 0.7 percent of the trades and block sales in 0.6 percent
of the trades.

3. Univariate predictions

In this section, we perform nonparametric tests of the ability of single
variables to predict the direction of changes in quote midpoints and
transaction prices. These tests are not contingent on distributional
assumptions and provide evidence on the ability of single variables
to predict quote returns and price returns. They also serve to further
characterize our data. Parametric tests of our multivariate model are
provided in the next section.

The variables used as predictors are the past quote return, r_,, the
past futures return, r4_,, the past difference between the transaction
price and the quote midpoint, z,_,, and the past difference between

1”7 As this example illustrates, there seems to be more constancy across stocks if the spread is stated
in cents per share than when it is stated as a percent of value. This also holds for the NASDAQ
market as shown in Stoll (1989). The fact that the effective spread is approximately the same fraction
of the quoted spread for IBM and American Express (at 0.67 and 0.63 respectively) is accidental
in the data set for the MMI 20 stocks. It turns out that IBM has the largest ratio of effective to quoted
spread. The ratio declines to a low of 0.41 for Eastman Kodak.

" Depths in excess of 999 round lots are reported as 999. This fact may bias downward the average
depth for a stock like AT&T with large depth.
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Table 2
Contingency tables for pooled pl
A: Current quotes and current trades

ri/rie. <0 =0 >0 ri/ri <0 =0 >0

<0 20,664 17,748 21,583 59,995 <0 18,045 15601 16,557 50,203

=0 18,144 24,330 17,434 59,908 =0 25440 28,394 24,886 78,680

>0 21,268 17,656 19,685 58,609 >0 16,631 15739 17,259 49,629
60,076 59,734 58,702 178,512 60,076 59,734 58,702 178,512

ri/ri., <0 =0 >0 re/ri, <0 =0 >0

<0 34,982 4,455 20,558 59,995 <0 26816 3,772 19,615 50,203

= 27,386 5,171 27,351 59,908 =0 35966 6,423 36291 78,680

>0 19,559 4,338 34,712 58,609 >0 19,145 3,769 26,715 49,629
81,927 13,964 82,621 178,512 81,927 13,964 82,621 178,512

ri/z,_, <0 =0 >0 rt/z_, <0 =0 >0

<0 30,228 18,150 11,617 59,995 <0 10,527 13,389 26,287 50,203

= 24,599 12,093 23,216 59,908 = 29,876 21,248 27,556 78,680

>0 11,567 17,178 29,864 58,609 >0 25991 12,784 10,854 49,629
66,394 47,421 64,697 178,512 66,394 47,421 64,697 178,512

ri/D_, <0 =0 >0 r?/D,_, <0 =0 >0

<0 14,924 12,522 32,549 59,995 <0 16,714 10,205 23,284 50,203

= 22,706 10,225 26,977 59,908 =0 28926 14,951 34,803 78,680

>0 27,980 12,625 18,004 58,609 >0 19,970 10,216 19,443 49,629
65,610 35,372 77,530 178,512 65,610 35,372 77,530 178,512

B: Standing quotes and current trades

ri/ri, <0 =0 >0 re/ri, <0 =0 >0

<0 19,659 30,028 20,784 70,471 <0 18,885 32,991 17,364 69,240

=0 30,876 90,806 28,755 150,437 =0 34,466 83,995 33,013 151,474

>0 20,166 29,215 18,997 68,378 >0 17,350 33,063 18,159 68,572
70,701 150,049 68,536 289,286 70,701 150,049 68,536 289,286

ri/ri_, <0 =0 >0 re/ri, <0 =0 >0

<0 41,538 6,118 22,815 70,471 <0 35819 6,288 27,133 69,240

=0 66,833 16,368 67,236 150,437 =0 67,675 15,744 68,055 151,474

>0 21,320 5975 41,083 68,378 >0 26,197 6,429 35946 68,572
129,691 28,461 131,134 289,286 129,691 28,461 131,134 289,286

ri/z,_, <0 =0 >0 rt/z_, <0 =0 >0

<0 39,254 20,103 11,114 70,471 <0 11,486 17,667 40,087 69,240

=0 57,932 42,060 50,445 150,437 =0 56,958 46,748 47,768 151,474

>0 11,046 19,164 38,168 68,378 >0 39,788 16912 11,872 68,572
108,232 81,327 99,727 289,286 108,232 81,327 99,727 289,286

ry/D., <0 =0 >0 r?/D_, <0 =0 >0

<0 16,972 15,247 38,252 70,471 <0 23,039 15,205 30,996 69,240

=0 52,096 36,064 62,277 150,437 =0 52,342 36,184 62,948 151,474

>0 32,991 15,150 20,237 68,378 >0 26,678 15,072 26,822 68,572
102,059 66,461 120,766 289,286 102,059 66,461 120,766 289,286

The variables are quote return (r7), price return (r?), change in S&P 500 index future prices (r/),
deviation of the transaction price from the quote’s midpoint (2), and the difference between the
quoted volumes at ask and bid quotes (D).
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the depth at the ask and depth at the bid, D,_,. Descriptive information
for pooled data set A and for pooled data set Bare contained in panels
A and B of Table 2 in the form of three-by-three contingency tables.*?
Results of a formal test of forecasting ability are contained in Table
3.20

3.1. Descriptive information

The contingency tables categorize the observations into negative,
zero, and positive values, and provide additional insight into the
nature of the transactions process. In panel A, which tabulates the
178,512 pooled observations in data set A, quote returns are about
equally divided into negative, zero, and positive values, but price
returns are zero with greater frequency (78,680) than they are negative
(50,203) or positive (49,629). This difference is understandable since
data set A contains intervals in which a new quote was posted. It is
interesting to note that one-third of the new quotes do not involve a
change in the quote midpoint, but reflect a change in the depth at
the ask or bid.

In panel B, which tabulates the 289,286 observations in data set B,
the distributions of quote returns and price returns are the same, with
more than twice as many zeros as either negative or positive obser-
vations. Most interesting is the finding that quote changes are as
frequent as price changes. This finding is not consistent with a world
in which randomly arriving orders trade at the maintained quotes.
Rather, quotes are adjusted as limit orders are placed and executed,
and as the specialist changes quotes in response to observed trades
and new information.

The frequency distribution for z,_, indicates that 26.6 percent of
the trades in data set A (47,421) and 28.1 percent in data set B (81,327)
occurred at the quote midpoint. This may reflect the result of a suc-
cessful negotiation to trade within the quotes or the fact that quotes
from the floor or the book are not reported.

Stock index futures returns are zero 8.9 percent of the time in data
set Aand 9.8 percent of the time in data set B. The remaining variable,
D, ,, is zero about 20 percent of the time and is positive with the
greatest frequency.

3.2 Prediction

This section tests the ability of the lagged predictors to forecast cor-
rectly positive and nonpositive returns in quotes and transaction prices.
The first prediction rule is that 7, > 0 predicts ¢ > 0 and r2 > 0.

1 Results for individual companies are available from the authors.

* Jang and Venkatesh (1991) provide similar cross-tabulations for some of the variables we provide
in this section, but they do not use the information as a basis for any statistical tests.

195



The Review of Financial Studies /v 7 n 1 1994

1831 omawo3312dAY (1861) S,UOHIW pue UOSSHUIUSH Jursn [243] 2duedgrudis 1wad1ad ¢ oy e sisaylodAy

[INU 543 JO UONDI[21 SANEDIPUT JSLASE UV ‘I = 7 + ' st Aijiqe Sunsedalo) ou jo sisayrodAy [nu Yy ‘A[oandadsard b =1 10J 0 = )4 PUE (0 < /4 1B USAIB [ — 7
SWIl 18 SPEW ISEIDIOJ 1921100 € JO saniiqeqoid [euonipuod a1e %7 pue 'q (‘~'@) sa1onb piq pue sk 18 sownjoa paronb ay1 usamiaq 30ua1agIp pagse] oyr pue ‘(17'z)
jutodpru s,10nb oy woiy 20ud uondesuEN SY1 Jo uonelAsp pade] (‘i) sadud sarmng Xxapur 00S %S Ut a3ueyd pagdder ¢(*44) uimal a1onb pad3e| are s1o11paid ayL

*859°0 *68€°0 +«069°0 «08S°0 2090 €LT°0 #695°0 *¥ZS0 *CLLO *S9Z°0 0 < a4

*«L89°0 *C8%°0 0950 910 «12L0 8550 #2650 *109°0 *9LL°0 *8LT°0 0 < o4
sapen ua1nd pue sajonb Juipuers :g

*9Y9°0 *20¥°0 *(89°0 *V2S0 7850 6120 *995°0 *8€S°0 *8.9°0 *8¥€°0 0 < a4

*989°0 «LLV0 €S0 L61°0 *60L°0 *01S°0 x009°0 * 2650 *SL9°0 *9€€°0 0 < b4
sopen uannd pue sajonb jusmn) v

4 'd d d d d d d d d 15802104

0> _l\Q 0> 1-iy 0< 1-iy 0< TVL 0< _lm.k

s10101paid pagd3e

SY203s [WIW 0Z Pa100d a3 30J (/+4) sad1ad pue (»4) sajonb vo suanias Jo sIsL1230) dNPwWeIedUcy IIEILATUN)
€ 91qeL

196



Microstructure Predictions

This rule is based on the assumption that quotes and prices do not
adjust instantaneously due to structural features such as stabilization
rules and limit orders. The second prediction rule is that #{_, > 0
predicts ¢ > 0 and 72 > 0. This rule is based on the assumption that
stock quotes and transaction prices do not instantaneously reflect S&P
500 future prices. The third prediction rule is that, for quote returns,
z,_, > 0 predicts r¢ > 0; for price returns, that z,_, < 0 predicts r?
> 0. The third rule, under which opposite predictions are made for
quote returns and price returns, reflects microstructure theory. Under
the adverse information theory of spreads, quotes are updated to
incorporate the information contained in z,_,. Inventory theories of
the spread would also predict a positive quote return following a
positive z because the specialist raises quotes to discourage public
purchases and encourage public sales. On the other hand, reversals
in transaction returns are necessary if the specialists and others pro-
viding immediacy are to earn revenues to cover the costs they incur
in supplying immediacy. Therefore, the price return prediction rule
is that positive values of z (trade at the ask) are most likely to be
followed by negative values of z (trade at the bid). The fourth pre-
diction rule is that D,_; < 0 predicts »¢ > 0 and ? > 0. This rule is
based on the assumption that greater depth at the ask than at the bid
leads to a drop in quotes and trade prices because the excess of sell
orders over buy orders signals bad news and/or sets a barrier to price
increases relative to price decreases.

Table 3 presents the proportion of outcomes that are correctly
predicted for each of the pooled data sets. For each prediction rule,
the table reports two probabilities, P, and P,, that are the conditional
probabilities of a correct forecast made at time ¢ — 1 given that r{ >
0 and ri = 0 for = g, p, respectively. For example, for the first rule,
P, = Prob[rs, > 0| r7 > 0] is the probability that a positive return
was correctly forecast, given that the outcome was a positive return,
and P, = Prob[r7, = 0| r¢ < 0] is the probability that a nonpositive
return was correctly forecast given that the outcome was a nonpositive
return. Merton (1981) shows that the prediction rule has no value if
and only if P, + P, = 1. In particular, a rule has forecasting power
when P, + P, > 1. Henriksson and Merton (1981) propose a non-
parametric hypergeometric test of the null hypothesis, H,: P, + P, =
1. A one-tailed test at the 5 percent significance level for the above
example involves finding the value of x* that solves

-0

= .05,
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where 7, = min(,, n), », is the number of correct forecasts given
that 7 > 0, N, is the number of 72 > 0, »n is the number of times
r?2 > 0 is predicted, N, is the number of r¢ < 0, and N= N, + N,.2!
The null hypothesis is then rejected if #, = x*. An asterisk in the
table on the P,, P, pair indicates that the null hypothesis, H,: P, +
P, =1, is rejected in favor of the alternative hypothesis, H,: P, + P,
> 1.

The proportions in Table 3 are calculated from the data reported
in Table 2. To illustrate, consider the prediction rule, z,_, > 0, and
refer to the third contingency table in the left-hand column of Table
2, panel A. Of the total sample, N = 178,512, N, = 58,609 quoted
returns are positive; and of these, n, = 29,864, or 51.0 percent, are
correctly predicted. Nonpositive quote returns amounted to N, =
119,903; and of these, 85,070, or 70.9 percent, are correctly predicted.
The total number of times a positive quote return is predicted is
= 64,697.

The number of asterisks in Table 3 indicates that each predictor,
taken alone, has forecasting power. The lagged quote return, although
statistically significant, is the weakest of the predictors. While positive
lagged quote returns predict positive quote and price returns, P, +
P,=1.011 in the case of quote return predictions and P, + P, = 1.026
in the case of price return predictions in panel A, the values barely
exceed one. The corresponding values in panel B are 1.054 and 1.037,
respectively.

The futures return is a statistically significant predictor for both
quote returns and price returns. In data set 4, 59.2 percent of the
positive quote returns are correctly predicted by prior positive futures
returns, and 60 percent of the nonpositive quote returns are correctly
predicted by prior nonpositive futures returns. The sum of these
proportions significantly exceeds one under the hypergeometric test.
The prediction of price returns is also statistically significant. The
results are virtually identical for data set B.

The third column of Table 3 show that positive z values predict
positive quote returns as implied by the adverse information and
inventory theories of the spread. Positive z values do not predict
positive price returns. The fourth column of the table shows that
negative z values do not predict positive quote returns, but they do
predict positive price returns. The prediction of positive price returns
by negative z reflects the well-known tendency of prices to reverse
as they bounce between the bid and ask.

The final column shows that negative values of the depth variable,
D, predict positive quote and price returns, which supports the sig-

' As the numbers in the contingency tables indicate, a much simpler normal approximation also
suggested by Henriksson and Merton (1981) is not applicable here.
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naling and barrier effects of depth. In other words, when depth at
the bid exceeds depth at the ask, subsequent quote and price returns
tend to be positive.

4. Model estimation and inference

In this section, we report the results of estimating the quote equation
(5) and the price equation (8). The quote return at time ¢ is the
predicted return in the stock based on the available information at
time ¢ — 1 after adjusting for inventory effects as specified in Equation
(5). The price return in Equation (8) is the predicted quote return
adjusted for the bid-ask bounce and the order arrival effect as described
in Equation (7). The predictors are the same in both equations, and
theory predicts the coefficients of the microstructure predictors to be
the same, except for z,_,.

The two equations are estimated simultaneously by Hansen’s (1982)
generalized method of moments (GMM) procedure. The GMM
approach has several advantages. First, the residuals from the regres-
sions may be conditionally heteroskedastic. Since, the predictors are
predetermined and not exogenous, this is a likely scenario. Second,
GMM permits a simple procedure to account for the presence of
serially correlated errors.

Third, GMM makes it unnecessary to impose a specific distribu-
tional assumption for the residuals. This is a relevant consideration
in light of the discreteness in quotes and prices, which are measured
in eighths of a dollar. Discreteness has the effect of inducing rounding
errors in observed price returns and quote revisions relative to their
continuous values.?? The observational model is identical to Equa-
tions (5) and (8) except that the residuals now include the first
difference in rounding errors. Glosten and Harris (1988) use maxi-
mum likelihood estimation procedures to estimate a model with
rounding errors in the residuals by making specific distributional
assumptions for the residuals and the rounding errors. A more direct
approach to account for discreteness is to use an ordered probit model
as proposed by Hausman, Lo, and Mackinlay (1992). This approach
requires a nonlinear maximum likelihood estimation procedure and
specific distributional assumptions.

To illustrate the estimation procedure, let ¥’ = (79, r*) where r’
is an n X 1 vector with typical element ri, Zbe an » X 8 matrix with
typical row element Z,_, = (1, ri,, ¥/_,, 2,1, Qi_1, L{,, L2, D,_)),
b = (b, b*), where b’is an 8 x 1 vector of coeficients, and U’ = (e,

22 Although we use five-minute returns, which mitigate the discreteness problem, discreteness is still
observed. For example, if price returns at ¢ are plotted against lagged price returns at ¢ — 1, one
observes clusters of points that radiate from the zero return point at the center of the graph.
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e), where e and eare n X 1 vectors of residuals with typical elements
denoted as U, Stack the two-equation system as

Y=Xb+ U,

Yo [z 0]‘
0 Z

Next consider the 16 x 1 vector function f(r!, Z,_,, ¥) = U,® Z,_,,
where ® represents the Kronecker product. The GMM procedure
involves choosing the parameters that minimize the quadratic func-
tion g,(b)’ W, g,(b), where g,(b) is the sample mean of the 16 ortho-
gonality conditions E[f(Y,, X,_,, b)], E[-] is the unconditional expec-
tation operator, and W, is the 16 X 16 symmetric weighting matrix
designed to make g,(b) as close to zero as possible. We use the
weighting matrix shown by Hansen (1982) to yield the smallest
asymptotic covariance matrix among the class of estimators that employ
the orthogonality conditions. The weighting matrix is appropriately
adjusted for the presence of serial correlation and conditional het-
eroskedasticity in the error terms. The results we present account for
first-order serial correlation in the residuals since a few companies
were found to exhibit weak first-order serial correlation. All the stan-
dard errors are also adjusted for conditional heteroskedasticity.?

Since the parameter estimates are consistent and asymptotically
normal, straightforward inference procedures are applicable for test-
ing cross-equation and within-equation restrictions. For example, to
conduct a Wald test of equal coefficients across equations, we compute
the following x 2 statistic with one degree of freedom:

(2 EANE
0(b,) [(ab'> v(b,) (ab') ] 0(b,),

where the cross-equation constraint is expressed as 6(b,) = Rb, —
r =0, where Ris a 16 x 16 matrix and r is a 16 X 1 vector.
Regression results for each company are presented in Tables 4 and
5. The averages across companies of the coefficients and their #-ratios
are presented in the last rows of the tables. Since no cross-equation
restrictions are imposed in Tables 4 and 5, simultaneous estimation
of Equations (5) and (8) produce estimated coefficients that are equiv-

where

3 We also conduct two additional set of estimations to check the robustness of our results. First, we
apply GMM without any adjustment for serial correlation. Second, we apply maximum likelihood
estimation assuming the error terms to be normally distributed, serially uncorrelated, and condi-
tionally homoskedastic. These additional estimations, which yield similar inferences, are not pre-
sented in the article.
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Table 4
Quote revision rule for 20 MMI stocks arranged alphabetically by ticker symbol

Co. a, a, a, a, a, as ag a, R?

A: Current quotes and current trades

AXP 0.06 —7457* 449.47* 249.69* 0.13 093* -—-093* —0.49* 0.21
CHV 0.05 —64.20* 343.45* 307.70* 0.05 0.73* —0.87* —0.30* 023
DD —0.02 —74.68* 343.89* 479.55* 0.04 027 —0.45* —020* 024
DOW —0.01 —63.78* 336.90* 397.04* 0.47* 0.39* —0.38* —022* 021
EK —0.05 —64.16* 328.01* 303.62* 0.06 0.99* —0.58* —041* 0.14
GE 0.04 —153.84* 525.89* 197.84* 0.01 0.64* —059* —0.23* 020
GM 0.02 —36.18 351.63* 371.43* 0.00 024 —0.21 —0.22*  0.17
IBM 0.02  —204.91* 389.99* 281.49* 0.27* 0.18 0.01 —0.12* 0.18
P —0.06 —79.73* 330.30* 311.68* 028 0.98* —0.64* —034* 0.19
JNJ 0.00 —66.06* 329.98* 378.12* 0.02 039 —0.37 -0.23* 0.19
KO 0.03 —70.40* 340.12* 325.43* 0.17 033 —0.24* —035* 0.17
MMM —0.03 —112.71* 439.33* 451.26* 0.08 029 —0.71* —0.22* 022
MO 0.02 —71.19* 257.80* 397.43* 002 037 —025 —0.18* 0.8
MOB 0.06 —68.04 303.84* 347.26* 022 0.65 —0.79* —045* 0.20
MRK —0.04 —119.62* 346.76* 403.57* 0.01 0.62* —0.45 —0.20* 0.22
PG —0.02 —11291* 29240* 372.25* 0.00 034 —0.60* —025* 0.19
S 0.06 —13.61  320.60* 311.03* 035 0.75* —0.84* —042* 022
T 0.11* —19.95 302.51* 122.11* 0.07* 1.10* -1.01* —043* 0.18
X 0.02 —38.82 33491* 25526* 0.10 143* —097* —044* 022
XON 0.14* —9395* 439.34* 325.01* 003 030 —0.54 -029* 0.7
u(coeff)  0.02 —80.16  355.36 32944 012 060 —0.57 —0.30

u() 0.83 —5.46 16.58 16.65 1.61 3.64 —319 —17.01

B: Standing quotes and current trades

AXP 0.05* —49.56* 429.66* 216.71* 0.09 1.19* -—103* —032* 021
CHV 0.04 —55.33* 341.65* 254.63* 0.01 0.84* —0.83* —023* 023
DD —0.01 —53.96* 337.97* 464.13* 0.08 024 —042 -0.16* 0.27
DOW 0.00 —50.97* 320.59* 392.21* 0.57* 0.38* —0.37* —0.18* 0.22
EK —0.02 —33.58  348.01* 259.90* 0.09 1.15* —-0.80* —0.28* 0.18
GE 0.04* —150.27* 536.92* 174.21* 0.02 0.66* —0.60* —021* 021
GM 0.01 —26.73 374.01* 340.95* 0.01 0.25 —0.33* —0.13* 020
IBM 0.02 —203.68* 388.55* 275.05* 027 0.20 0.00 —0.12* 0.18
1P —0.04 —91.38* 333.93* 300.14* 0.71* 0.86* —0.68* —026* 022
INJ 0.00 —41.90 314.68* 346.93* 0.03 0.52* —0.67* —0.17* 020
KO 0.03* —50.54* 323.89* 275.45* 0.26 0.72* —0.62* —022* 0.19
MMM —0.03 —83.27* 404.03* 439.58* 0.12 0.44* —0.57* —0.18* 023
MO 0.01 —54.92* 258.38* 384.59* 0.02 041* —-027* —0.13* 021
MOB 0.03 —43.78  280.55* 234.15* 0.63* 0.77* —0.82* —024* 021
MRK —0.03 —104.97* 344.24* 357.34* 0.02* 0.58* —0.51* —0.15* 023
PG —0.02 —82.46* 303.12* 325.81* 0.00 034 —0.62* —020* 022
S 0.05* 428 317.10% 222.17* 0.76* 0.83* —0.87* —0.24* 023
T 0.07* —12.72  355.29* 78.03* 0.07 1.17* —1.28* —024* 0.19
X 0.02 —24.35  32833* 199.97* 0.17 1.39* —1.09* —030* 022
XON 0.12* —54.13* 412.38* 247.59* 0.13 0.45* —0.74* —0.16* 0.19
u(coeff)  0.02 —63.21  352.66 289.48 020 0.67 —0.66 —0.20

w(t) 1.50 —4.78 19.06 2135 236 614 —586 —18.65

The model is
ri=a.+ ari, +arl,+ az_,+ a, Q-+ alt, + alf, + a,D,_, +n,

where r7 is the change in quotes, r/_, is the change in S&P 500 index futures prices, z,_, is the
deviation of the transaction price from the quote’s midpoint, Q,_, is the cumulative signed volume,
L7, is the indicator variable for public buys that exceed 10,000 shares, L2, is the indicator variable
for public sales that exceed 10,000 shares, and D,_, is the difference between the quoted volumes
at ask and bid quotes. The table presents the coefficient estimates and the R? of each stock. The
last two rows contain the average of the coefficients (u(coeff)) and the average of the heteroske-
dasticity-consistent #statistics (#(#)). All the coefficient estimates except for Q,_, are multiplied by
1000. The coefficients estimates for Q,, are multiplied by 1,000,000. An asterisk indicates a #-statistic
that exceeds the value implied by a posterior odds ratio of 1.
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Table 5
Price prediction rule for 20 MMI stocks arranged alphabetically by ticker symbol

Co. a, a, a, a, a as ag a, R?

A: Current quotes and current trades

AXP —0.25*% —89.79* 569.71* —711.29* 0.19 098* -—0.81* -045* 0.21
CHV 0.04 —78.66* 406.56* —629.95* 0.01 0.60 —0.55 -0.29* 017
DD 0.04 —93.16* 401.27* —484.32* 0.05 032 -0.37 —0.20* 0.10
DOW 0.02 —92.63* 373.97* —574.80* 0.43* 0.35 —0.26 —0.19* 0.13
EK 0.01 —68.09* 401.32* —646.78* 0.04 1.01* -—0.57 —0.39* 0.15
GE 0.00 —165.13* 558.70* —74891* 0.05 0.63* —0.38 —0.24* 0.22
GM 0.01 —36.01 384.29* —606.55* 0.00 0.33 —-0.28  —0.28* 0.14
IBM —-0.02 —213.98* 386.80* —682.39* 0.38* 0.11 0.09 —-0.12* 0.15
1P 0.10* —88.88* 442.10* —631.55* 031 0.76* —0.74 -0.29* 0.15
N 0.05 —93.43% 367.07* —600.63* 0.02 0.22 —0.32 —-0.21* 0.3
KO -0.05 —87.21* 398.18* —603.88* 0.21 0.26 —0.01 -0.33* 0.13
MMM 0.07 —137.24* 520.79* —489.35*% 0.26 0.24 —0.74* —020* 0.11
MO 0.03 —70.54* 292.62* —565.79* 0.05 042 —0.25 —0.16* 0.11
MOB 0.05 —90.45* 328.22*% —627.02* 030 040 —0.72 —0.36* 0.20
MRK 0.07* —122.10* 401.93* —564.90* 0.00 0.48 —0.52 —0.20* 0.14
PG 0.03 —146.72* 344.06* —595.16* 0.01 041 —0.35 -0.23* 013
S 0.04 —-7.23 376.87* —621.02* 0.55* 0.54 —0.63 —0.42* 0.15
T —0.28* —66.78*% 34833* —805.29* 0.08 0.77* —0.92* -—0.40* 0.27
X 0.01 —=57.11 460.97* —658.30* 0.06 1.26* —1.20* -—0.42* 0.19
XON —0.13* —110.65* 488.49* —660.12* 0.13 028 —0.53 —0.28* 0.14
u(coefl) —0.01  —9579 41261 —62540 0.16 052 —050 —0.28

w(®) 0.05 —5.63 16.82 —27.27 170 264 —-226 -13.17

B: Standing quotes and current trades

AXP —0.27* —82.45* 602.27* —70895* 0.11 1.07* -—0.89* -—0.36* 0.25
CHV 0.01 —91.05* 447.86* —632.58* 0.03 0.59* —0.50* -—0.22* 0.21
DD 0.04 —85.78%  416.59* —488.29* 0.08 0.37 —0.37 -0.16* 0.12
DOW 0.02 —81.25* 363.82* —569.93* 0.54* 0.27 -0.25 —0.15* 0.14
EK 0.00 —50.35* 431.20* —622.29* 0.12 1.00* -—0.60* —032* 0.19
GE 0.00 —154.20* 551.98* —723.90* 0.05 0.58* —0.39* -—0.24* 0.23
GM 0.00 —35.14 423.92% —545.50* 0.01 0.22 —0.34* —021* 0.16
IBM —0.02 —213.67* 384.87* —684.39* 0.39* 0.11 0.09 —0.12* 0.15
1P 0.09* —101.54* 480.49* —619.30* 0.84* 0.63* —052 —022* 0.8
N 004 —77.86* 356.81* —607.78* 0.02 0.34 —-0.45 —0.17* 0.15
KO —0.09* —66.34* 402.80* —574.79* 028 0.54* -034 —026* 0.15
MMM 0.06* —109.85* 505.82* —482.95* 0.33 0.18 -052 —0.17* 0.12
MO 0.02 —73.21* 312.13* -537.43* 005 044* -015 —0.13* 0.3
MOB 0.02 —83.81* 360.18* —603.44* 043 040 —0.59* —0.21* 0.20
MRK 0.07* —106.11* 407.07* —576.71* 0.00 053* —0.63* —0.15* 0.16
PG 0.04 —129.72* 395.77* —630.39* 0.01 0.37 -0.42 —020* 0.17
S 0.00 16.54 407.29* —631.42* 1.00* 0.74* —0.46* -0.30* 0.21
T —0.35* —71.25% 427.84* —792.89* 0.08 081* -—0.99* -0.32* 0.32
X 0.01 —46.27 468.66* —668.02* 0.13 1.19* —1.00* -0.34* 023
XON —0.21* —71.83* 488.57* —649.28* 0.17 046* —0.52* -0.22* 0.18
u(coeff) —0.03 —85.76 431.80 —617.51 023 0.54 —-049 —0.22

u(t) -1.16 —5.58 20.06 —3868 234 4.04 —3.45 —15.34

The model is
ri=a,+ ari, + arl, + az_, + a,Q, + all, + all, + a,D,_, + 1,

where r# is the change in transaction prices, ¢ is the change in quotes, 7/_, is the change in S&P
500 index futures prices, z,_, is the deviation of the transaction price from the quote’s midpoint,
Q.- is the cumulative signed volume, Ly, is the indicator variable for public buys that exceed
10,000 shares, L, is the indicator variable for public sales that exceed 10,000 shares, and D,_, is
the difference between the quoted volumes at ask and bid quotes. The table presents the coefficient
estimates and the R? of each stock. The last two rows contain the average of the coefficients (u(coeff))
and the average of the heteroskedasticity-consistent #-statistics (u(#)). All the coefficient estimates
except for Q,_, are multiplied by 1000. The coefficient estimates for Q,_, are multiplied by 1,000,000.
An asterisk indicates a #-statistic that exceeds the value implied by a posterior odds ratio of 1.
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alent to single-equation OLS estimates, but the standard errors differ
from OLS estimates. The results of Wald tests are presented in Table 6.

Since the sample size in each regression often exceeds 10,000
observations, it is easy to reject a specific null hypothesis against a
diffuse alternative using the usual values of the t-ratio.?* Therefore,
we consider a coefficient to be statistically significant only if its #ratio
exceeds a break-even value, ¥, at which the ratio of the posterior
probability of the null hypothesis (a; = 0) equals the posterior prob-
ability of the alternative hypothesis (a, # 0). We follow the procedure
of Rossi (1988) in calculating the posterior odds ratio K = Pr(H,)/
Pr(H,).» Strictly speaking, the posterior odds ratios are defined only
for maximum likelihood procedures. Since maximum likelihood esti-
mation also yields similar results, we use the ratios to provide a more
conservative criterion.

Rossi (1988, p. 363) computes the approximate posterior odds
ratio as

K= exp{%[q Inyv — Xé]},

where xZ is the likelihood ratio statistic, g is the number of restric-
tions, v = n — ¢, and » is the number of observations. When the
significance of a particular coefficient is tested as in Tables 4 and 5,
the posterior odds ratio is calculated as?®

K= exp{%[ln(n -1 - t,z,_l]}.

For example, at » = 10,000, the odds ratio, K, is 1 at a t-ratio of t* =
3.03. For tratios above 3.03, the probability of the alternative exceeds
the probability of the null, and vice versa. In Tables 4 and 5, an asterisk
is assigned to a coefficient if its #-ratio exceeds its break-even #-value.
In Table 6, we use the break-even value of x 2 that yields a posterior
odds ratio of unity (a) for tests of exclusion on all the coefficients in
each regression except the constant, and (b) for tests on the individual
cross-equation restrictions.

The results indicate that the predictive power of the equations is
surprisingly strong and uniform across the companies for both data
sets. For the quote equations, the R?’s range from 14 percent (EK)
to 24 percent (DD) based on data set 4 and from 18 percent (EK) to

# This problem with standard statistical tests is sometimes referred to as Lindley’s paradox after
Lindley (1957). With type I error constant, type II error can be reduced to zero with a sufficiently
large sample.

5 See also Connor and Korajczyk (1988, p. 283).

% To obtain this equation, we use the fact that g = 1 and that x3 = x} = F,,_, = t2_, for large n.
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Table 6
Wald tests of the cross-equation restrictions between quote and price equations
a, — 1
Co. G50 =0 b.,=0 a, =b a,=b, =b, a,=b, a;=b; ag=b; a,=b

A: Current quotes and current trades

AXP 1862.77* 1368.06* 2.16  34.69* 10.36* 10.14* 0.08 0.49 2.70
CHV 1452.53* 1316.61* 172 13.72* 18.79* 14.26* 0.69 3.75 0.45

DD 1945.40*  724.60* 520 29.86* 884 009 018 048  0.05
DOW  2031.42* 1079.61* 14.54* 2123* 639 035 034 249 1557*
EK 748.65*  888.24* 0.17 3846* 1214* 075 002 000 075
GE 2457.15* 3045.46* 219 699  26.90* 696 003 711 117
GM 89563*  677.84* 000 1335* 301 081 107 062 26.71*
IBM 2015.08* 1196.43* 259 035  14.85* 850 260 166  0.38
1P 1648.89*% 1254.70* 078 44.10* 18.33* 007 172 031 12.82*
INJ 1514.77*%  696.43* 13.59* 14.98* 317 012 172 015 329
KO 1160.48*  729.03* 213 17.47* 1840* 034 029 205 073
MMM  1634.59*  808.09* 820 37.40* 19.97* 273 011 003  4.65
MO 1444.29*  842.05* 001 19.77* 917 3297* 043 000 578

MOB 773.10* 305.32* 232 2.22 2.21 0.68 2.72 0.17 9.98%
MRK 969.44 * 665.92* 010 19.91* 7.26 3.41 1.33 0.27 0.00

PG 1068.19* 1036.39* 13.05* 20.19* 6.19 27.72*% 033 3.41 1.25
S 1356.48* 992.35* 033 13.96* 18.26* 554 2.44 1.35 0.08
T 1291.14* 2647.84* 12.87* 8.12 34.60*  0.09 7.02 0.42 2.01
X 1591.10*  1439.49*  2.07 42.66* 39.67* 3.51 1.02 1.96 0.92

XON 845.29* 884.61* 239 13.09* 1.07 3.87 0.07 0.01 0:13

B: Standing quotes and current trades

AXP 2565.05* 3903.18* 10.93* 77.36* 57.75* 0.87 0.81 1.19 4.26
CHV 2238.53* 2681.60* 11.01* 45.67* 111.32* 145 4.80 7.79 0.99

DD 2828.79* 1102.10* 16.57* 60.69* 20.80* 0.10 1.68 0.31 0.02
DOW  2626.91* 1501.11* 17.00* 30.40* 14.96* 0.17 3.16 3.49 9.59
EK 1437.38*% 2171.73* 3.61 58.64* 12521* 3.10 2.83 5.08 6.06
GE 2648.29* 3764.71*  0.28 157 113.00* 7.54 1.24 7.99 11.91*
GM 1370.29* 1193.69* 128 36.29* 31.33* 0.79 0.23 001 76.84*
IBM 2027.08* 1218.05*  3.14 0.47 18.75*  8.59 3.30 2.73 0.02
P 2557.17* 2303.00* 1.00 83.89* 56.18* 0.67 3.09 139  13.16*
JNJ 2149.90* 1146.01* 24.27* 19.67* 19.77* 0.15 3.22 4.24 0.42
KO 1865.03* 1545.95* 211 37.93* 157.88* 0.06 3.02 6.02 5.26

MMM 2047.88* 1162.91*  9.66* 62.07* 47.57* 3.13 4.78 0.18 0.46
MO 2248.39* 1464.27*  6.25 52.45* 62.37* 91.46* 024 3.89 0.14
MOB 1391.33* 1397.71* 5.87 31.77* 146.97* 253 13.12* 495 2.37
MRK 1417.94* 1412.14*  0.02  29.25% 40.20* 573 0.33 1.19 0.53

PG 1530.12* 483.19* 27.96* 67.95* 17.07* 28.94* 0.07 3.64 0.08
S 2198.52* 2792.44* 147 44.70* 182.62* 7.76 1.07  19.52* 21.37*
T 1913.21* 5974.90* 24.09* 20.01* 19628* 036 12.87* 655 33.10*
X 2293.29* 3445.39* 321 53.69* 171.63* 3.10 2.33 0.54 5.20

XON 1432.95* 2275.31* 353  42.41*% 101.27* 0.38 0.04 12.26* 27:37"

The model is

ri=a,+ ari, + arl, + az,_, + a,Q, + aslt, + all, + a,D,_, + nj,
ré=b,+ byri., + byrl, + bz, + b,Q,_, + bsl{, + bl , + b;D,_, + 0,

where r# is the change in transaction prices, r¢ is the change in quotes, r/_, is the change in S&P
500 index futures prices, z,_, is the deviation of the transaction price from the quote’s midpoint,
Q.- is the signed cumulative volume variable, L7, is the indicator variable for public buys that
exceed 10,000 shares, L , is the indicator variable for public sales that exceed 10,000 shares, and
D,_, is the difference between the quoted volumes at ask and bid quotes. The table presents x2-
statistics for 20 MMI stocks arranged alphabetically by ticker symbol. An asterisk in the first two
columns indicates a x >-value that exceeds the value implied by a posterior odds ratio of 1 for the
restriction that all coefficients except the constant are zero. An asterisk in the remaining columns
indicates a x 2-value that exceeds the value implied by a posterior odds ratio of 1 for the restriction
a,= b,
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27 percent (DD) based on data set B. For the price equations, the
R?’s range from 10 percent (DD) to 27 percent (T) in data set 4 and
from 12 percent (DD, MMM) to 32 percent (T) in data set B. The first
two columns of statistics in Table 6 also show that the null hypothesis
of zero coefficients for all the variables in each regression is soundly
rejected by the Wald tests since the x 2-values are far in excess of their
break-even values. Three variables—r/_,, z,_,, D,_,—are statistically
significant in every regression in Tables 4 and 5 in the sense that they
always exceed their break-even t-values. In most cases, the r-values
exceed 15. The other variables are not statistically significant in every
regression. Since a comparison of panels A and B in each table indi-
cates that the results for the two data sets are qualitatively the same,
we focus most of our discussion on data set A.

The key variable from the perspective of microstructure theory is
z,_,. On the basis of the estimated coefficient of z,_, in Tables 4 and
5, we can reject the pure order-processing theory, which requires
ai=0, a4=1, and the pure adverse-information theory, which requires
ai =1, a4 = 0. In data set A, the coeflicient of z,_, for the quote
equation averages 0.32944, which is significantly different from 0 and
1. The coefficient of z,_, for the price equation in the same data set
averages —0.6254, which is significantly different from 0 and —1. The
results are consistent with a mixture of order-processing and adverse-
information effects. As implied by the adverse-information theory,
quotes are changed to incorporate the information conveyed by trades.
On average 32.94 percent of the deviation of a transaction price from
the quote midpoint is reflected in a change in the quote midpoint in
the next interval. It is interesting to note that the smallest value of
af is for AT&T (at 0.12211), a widely held stock for which it is not
unreasonable that adverse-information effects are small. The largest
coefficients are for DuPont (DD) and 3M (MMM) (at 0.47955 and
0.45126, respectively).

The coefficient of z,_, in the price equation is negative, albeit not
equal to —1 as implied by the order-processing theory. The average
coefficient of —0.6254 indicates that 62.5 percent of the price devi-
ation in an interval is reversed the next interval. This negative coef-
ficient reflects an attenuated bid-ask bounce in price returns. The
coeflicient reflects three components as shown in the cross-equation
restriction, @4 = af + p —1. If past trades convey no information (so
that ¢ = 0) and if the order arrival process is immaterial (so that p
= 0), the coefficient would reflect a bid-ask bounce effect of a4 =
—1. That the coefficient is greater than —1 implies that adverse-infor-
mation and/or order arrival effects (induced by dealer pricing) are
present. The most negative coefficient is for AT&T (at —0.77349),
implying that a large fraction of this stock’s spread compensates mar-
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ket makers for order-processing and inventory costs. The least neg-
ative values are for DuPont and 3M.

The fact that the coefficient of z,_, has a positive effect on quote
returns and a negative effect on price returns is initially surprising.
One might expect quote returns and price returns for the same stock,
defined over the same time period, to be highly correlated and to
respond in the same way to a given stimulus. However, the opposite
effects, which are observable in the short run, are fully consistent
with microstructure theory that includes both order-processing effects
and adverse-information effects.

The estimated coefficients on z,_, are also consistent with the inven-
tory-holding cost theory. Support for the inventory theory is also
provided by the change in inventory variable, Q,_,, although the
support is not strong. The variable has a positive sign in every regres-
sion in Tables 4 and 5, as predicted by the inventory theory, but the
coeflicients’ #-values only infrequently exceed their break-even value.?’

An implication of inventory theories of the spread is that quotes
are adjusted to induce orders that equilibrate inventory. Consider first
the induced order arrival effect as measured by p. The sixth column
of Table 6 tests whether p is zero in the cross-equation restriction
at= a% + p — 1 by testing whether @, — 1 = b,. This null hypothesis
is rejected for 11 of 20 stocks in data set A and for all stocks in data
set B. Assuming that the cross-equation restriction holds also provides
an estimate of p. Based on the average coefficients in data set 4, p =
1 — 0.329 — 0.625 = 0.046, and based on the average coefficients in
data set B, p =1 — 0.289 — 0.616 = 0.095. The fact that p > 0 is
inconsistent with the inventory-induced order arrival effect since it
implies that order arrivals are positively correlated. Positive serial
correlation can arise from the breakup of a large order or from the
process by which private information is incorporated into the price.

Other evidence of quote setting behavior reflecting inventory effects
is provided by the coefficient r2_,. This coefficient is negative for all
stocks except Sears in data set B. Its average #-ratio is —5.46 in data
set A and —4.78 in data set B. The negative coefficient indicates
negative serial correlation in quote returns. Under an inventory theory
of the spread, quotes exhibit negative serial dependence because
market makers shift quotes away from the true price to induce inven-
tory equilibrating trades. As inventory returns to normal, quotes also
reverse.? Price returns are also negatively correlated with prior quote

*” One of the difficulties is that the procedure for signing and cumulating volume is inaccurate. In
addition, cumulative volume may not reflect the change in inventory of the participants who
establish the quotes. We also used the volume of the sampled trade rather than cumulative volume,
but similar results are obtained.

% A recent article by Jegadeesh and Titman (1990) shows that the reversal in quotes is more important
over the long run (10 days) rather than the short run (1 day).
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returns, indicating that quote changes are successful in inducing
offsetting trades. Quote returns are positively correlated in the uni-
variate results reported in Tables 2 and 3, but, in the multivariate
setting, a negative correlation is observed after accounting for the
effect of other variables.

The coefficient of the depth variable, D,, is uniformly negative and
significant in both the quote regression and the price regression and
in both data sets. The coefficient’s negative sign indicates that sig-
naling and barrier effects rather than an inventory effect are operating.
When depth at the ask exceeds depth at the bid at + — 1, declared
sellers exceed declared buyers, and this causes quote returns and
price returns to be negative over the next interval.

The large-trade indicator variables, L# |, L2 ,, have the correct sign
in all but one case, and their effect may be capturing volume effects
that had been expected for Q, ,. When a transaction at ¢ — 1 is a large
purchase, both the quote return and the price return tend to be
positive in the next period. When a transaction at £ — 1 is a large
sale, both the quote return and the price return tend to be negative
in the next period. The results are consistent with both the inventory
and the adverse-information theories of the spread. The large trade
variables are, however, not always statistically significant. Their sig-
nificance is greater in the quote equations than in the price equations.

In addition to the microstructure variables, the lagged stock index
futures return, r{_,, is included to improve the predictive power of
the model. This variable is significantly different from zero in all the
regressions, which rejects the hypothesis of efficiency of quote and
price formation. In short, stock quotes and prices do not immediately
reflect information contained in the latest futures return. Based on
the average coefficient in data set 4, the quote midpoint changes by
35.54 percent of the index futures return in the preceding period.
The average coefficient for the price equation implies a higher impact
(0.41261). Every individual coefficient for r/_, is smaller in the quote
equation than in the price equation except for IBM. This is also true
for data set B. Table 6 provides formal tests for the equality of 7/_,
coefficients across equations. The equality constraint is rejected for
16 of 20 companies in data set 4 and for 18 of 20 companies in data
set B.

The predictive power of the index futures return is not due to
infrequent trading of the stocks, since the sample only consists of
those intervals in which stock transactions occurred. Furthermore,
the index futures price precedes the stock price in each five-minute
interval. The stock transaction in the lagged period could, in prin-
ciple, have incorporated the information from the futures market, but
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did not do so fully since some of the effect is observed in the next
period.

A final implication of our two-equation model is that the coefficients
of the microstructure variables in the two equations are equal except
for the coefficient of z,_,. Table 6 provides Wald tests of the equality
constraints on the coefficients of r2_,, Q,_,, L4, LZ ,, D,_,. The results
are broadly consistent with our specification since the chi-square
values of these microstructure variables rarely exceed the break-even
value.

Out-of-Sample Predictions

In this section, we analyze out-of-sample forecasts of the model. The
model is estimated for the first 90 days of 1988, and the estimated
parameters are used to predict quote and price returns for each inter-
val the following day. Each day, the model is then reestimated for
the most recent 90 days and used to forecast returns on the following
day, and this process continues for the remainder of 1988.

The mean-squared error of the model forecasts is reported in Table
7 for each data set. The mean-squared error is defined as

1 n
MSE = — > (F,— A)?
=1

where Fis the forecast and 4 is the actual outcome. For comparison,
we also report the mean-squared error for two naive forecasts. Naivel
predicts a quote or price return of zero; that is, F= 0. This is a highly
demanding criterion since a large fraction of the quote and price
returns in our data are zero. Naive2 predicts a quote (price) return
equal to the most recent quote (price) return.

Of the two standards of comparison, Naive2 has a larger MSE than
Naivel in every stock in each data set. In part this reflects the fact
that a large fraction of the returns is zero. Moreover, prices and to
some extent quotes tend to reverse, which implies that a forecast of
last period’s return is likely to be incorrect. The MSE is always larger
for price returns than for quote returns in each data set, an under-
standable feature since prices are more volatile than quotes. The
forecasting power of the model is reflected in the fact that the model
MSE is less than the MSE of Naivel or Naive2 in every stock for both
quote and price returns.

As one would expect, the mean-squared errors are larger in data
set A than in data set B. This reflects the fact that periods in which
quotes are updated are likely to be more volatile, resulting in larger
errors. Data set B includes all periods irrespective of whether quotes
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Table 7
Mean-squared errors of out-of-sample forecasts for 20 MMI stocks arranged alphabetically
by ticker symbol
Quote Returns Price Returns
Co. Model Naivel Naive2 Model Naivel Naive2

A: Current quotes and current trades

AXP 0.5723 0.7101 1.4920 0.9984 1.2600 3.1360
CHV 0.2758 0.3562 0.7238 0.5131 0.6179 1.4860
DD 0.1719 0.2260 0.4458 0.2869 0.3242 0.7334
DOW 0.1216 0.1515 0.2878 0.1753 0.2079 0.4632
EK 0.3336 0.3916 0.8212 0.4465 0.5392 1.2510
GE 0.2312 0.2831 0.6226 0.3219 0.4227 1.0330
GM 0.1947 0.2181 0.4075 0.2557 0.2854 0.6062
IBM 0.0817 0.1008 0.2092 0.1021 0.1200 0.2600
P 0.3236 0.3983 0.8172 0.6001 0.7240 1.7580
Ny 0.1517 0.1890 0.3733 0.2387 0.2813 0.6475
KO 0.3690 0.4445 0.8881 0.5397 0.6357 1.4300
MMM 0.2779 0.3447 0.7090 0.4177 0.4692 1.0640
MO 0.1397 0.1695 0.3349 0.2060 0.2346 0.5177
MOB 0.4462 0.5385 1.1720 0.5877 0.6819 1.5940
MRK 0.2254 0.2803 0.5740 0.3849 0.4672 1.1210
PG 0.2031 0.2515 0.5042 0.3522 0.4096 0.9660
S 0.3645 0.4468 0.8630 0.5381 0.6427 1.4270
T 0.3061 0.3713 0.7737 0.6019 0.8785 2.3000
X 0.4530 0.5665 1.2440 0.8581 1.0980 2.8120
XON 0.3128 0.3674 0.7136 0.4333 0.5069 1.1110
Avg 0.2778 0.3403 0.6988 0.4429 0.5403 1.2859
B: Standing quotes and current trades
AXP 0.3225 0.4068 0.8440 0.7720 1.0320 2.7290
CHV 0.1530 0.1938 0.3936 0.3819 0.4894 1.2760
DD 0.1179 0.1585 0.3127 0.2196 0.2538 0.5938
DOW 0.0867 0.1109 0.2103 0.1402 0.1689 0.3891
EK 0.1626 0.1992 0.4125 0.2905 0.3714 0.9222
GE 0.1906 0.2328 0.5102 0.2868 0.3803 0.9435
GM 0.1002 0.1171 0.2220 0.1536 0.1809 0.4038
IBM 0.0778 0.0960 0.1992 0.0991 0.1170 0.2554
P 0.2030 0.2575 0.5374 0.4576 0.5743 1.4530
JNJ 0.0963 0.1207 0.2359 0.1788 0.2160 0.5229
KO 0.1801 0.2203 0.4421 0.3245 0.3909 0.9342
MMM 0.1878 0.2405 0.4885 0.3167 0.3635 0.8483
MO 0.0849 0.1069 0.2116 0.1417 0.1661 0.3822
MOB 0.1522 0.1851 0.3964 0.3240 0.4165 1.0790
MRK 0.1390 0.1743 0.3571 0.2834 0.3533 0.8805
PG 0.1307 0.1616 0.3196 0.3056 0.3900 0.9915
S 0.1684 0.2078 0.3989 0.3351 0.4262 1.0370
T 0.1406 0.1659 0.3333 0.4800 0.7396 2.0660
X 0.2306 0.2873 0.6251 0.6619 0.9138 2.4930
XON 0.1361 0.1614 0.3139 0.2443 0.3049 0.7324
Avg 0.1531 0.1902 0.3882 0.3199 0.4124 1.0466

The last row provides the averages for the MMI stocks. Forecasts for five-minute returns within
each day are obtained from regression coefficients estimated with data covering the preceding 90
days. The models for quote return and price return forecasts are stated in the text as Equations (5)
and (8), respectively. Naivel predicts a zero return, and Naive2 predicts a return realized over the
preceding interval. All MSEs are multiplied by 100,000.
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are updated, resulting in less average volatility and lower mean-square
errors than for data set A%

6. Conclusions

The two-equation econometric model of short-run quote returns and
price returns developed and tested in this article provides new evi-
dence on microstructure theories. Transaction returns based on prices
sampled every five minutes react negatively to the deviation of the
trade price from the quote midpoint in the prior period, z,—,. The
coefficient, which averages —0.625 in the data set containing current
quotes and current trades, reflects an attenuated bid—ask bounce nec-
essary to compensate market makers for the cost of processing orders.
In contrast, quote revisions react positively to the deviation of the
trade price from the quote midpoint in the prior period, z,_,. The
coefficient, which averages 0.329, reflects the adjustment of quotes
to private information contained in the prior trade. Information is
also conveyed by the prior depth. When depth at the ask exceeds
depth at the bid, that is D,_, > 0, quote returns and price returns
tend to be negative over the next interval.

Evidence of inventory effects emerges in several forms. Quote mid-
points and transaction prices increase in response to inventory change
as measured by public volume, Q,_,, although this variable is not very
reliable. The reaction of returns to the large trade indicator variables
is consistent with an inventory model of quotes, but it is also con-
sistent with an adverse-information model if the amount of private
information conveyed by trades depends on the size of the trade.
Evidence from the time-series behavior of z,_, indicates the presence
of first-order serial dependence in z, which is inconsistent with the
negative serial dependence implied by inventory-induced order arrival.
Holding constant other effects, we find negative serial dependence
in quote returns, which is consistent with dealer pricing to stabilize
inventory.

In addition to the data on past prices, quotes, and volumes, we use
a nonmicrostructure variable to predict stock returns. Specifically,
past returns on the S&P 500 futures contract (7/_,) are always signif-
icant in predicting quote returns and price returns.

The two-equation model of quote and price returns is estimated
with generalized method of moments using data for 20 Major Market
Index stocks in 1988. Since the regressions often contain in excess
of 10,000 observations, standard #-tests make it easy to reject a specific
null hypothesis against a diffuse alternative. Therefore, we calculate

» We have also decomposed the mean-squared error into bias, variance, and covariance components,
but we do not present these lengthy results here. The basic finding is that the forecasts are not
biased.
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a break-even #-ratio that equates the posterior odds of the null to the
posterior odds of the alternative to aid in the interpretation of the
results. With the break-even #ratios, the variables z,_,, D,_,, and
rf_, are always significant in both the quote and price equations. For
the data set containing currently revised quotes, we are able to explain
between 14 and 24 percent of the variation in returns and between
10 and 27 percent of the variation in price returns strictly on the basis
of lagged variables. For the larger data set containing standing quotes
and current trades, we explain between 18 and 27 percent of the
variation in quote returns and between 12 and 32 percent of the
variation in price returns. The model is also successful in making out-
of-sample predictions in comparison to naive alternatives.

The ability to predict stock returns on the basis of microstructure
variables is not necessarily inconsistent with an efficient market.
Microstructure theory states that prices adjust to past prices and trades
to incorporate private information, to manage inventory, and to cover
operating costs. That prices behave according to this theory does not
imply the existence of positive expected trading profits. Inconsistent
with an efficient market is the fact that past stock index futures returns
predict subsequent stock returns. In a perfectly efficient market, one
would expect the quotes of the specialist and limit orders to adjust
to price changes in the futures market, but this does not appear to
be so. Institutional constraints, such as the specialist’s stabilization
requirements and the difficulty of continuously adjusting limit orders
to information contained in futures price, may explain the predictive
power of stock index futures. Transaction costs are likely to make it
difficult for most investors to take advantage of this predictive power.

Appendix. Major Market Index Securities

Company name Symbol
American Express AXP
Chevron CHV
Du Pont DD
Dow Chemical DOW
Eastman Kodak EK
General Electric GE
General Motors GM
IBM IBM
International Paper 1P
Johnson & Johnson JNJ
Coca Cola KO
3M MMM
Philip Morris MO
Mobil MOB
Merck MRK
Procter & Gamble PG
Sears Roebuck S
AT&T T
UsX X
Exxon XON
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