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Learning, Asset-Pricing Tests,
and Market Efficiency

JONATHAN LEWELLEN and JAY SHANKEN*

ABSTRACT

This paper studies the asset-pricing implications of parameter uncertainty. We
show that, when investors must learn about expected cash flows, empirical tests
can find patterns in the data that differ from those perceived by rational investors.
Returns might appear predictable to an econometrician, or appear to deviate from
the Capital Asset Pricing Model, but investors can neither perceive nor exploit this
predictability. Returns may also appear excessively volatile even though prices
react efficiently to cash-flow news. We conclude that parameter uncertainty can be
important for characterizing and testing market efficiency.

THERE IS MUCH EVIDENCE THAT STOCK RETURNS are predictable. At the aggregate
level, variables such as interest rates, financial ratios, and the default pre-
mium appear to forecast stock returns (e.g., Fama and French (1989) and
Lewellen (2001)). Further, LeRoy and Porter (1981) and Shiller (1981) argue
that price volatility cannot be explained solely by changes in dividends, pro-
viding indirect evidence that stock returns are predictable. At the firm level,
Fama and French (1992, 1996) and Jegadeesh and Titman (1993) show that
size, book-to-market, and past returns together explain much of the cross-
sectional variation in average returns. There seems little doubt that ex-
pected returns vary both cross-sectionally and over time.

The interpretation of predictability is more contentious. The empirical re-
sults are potentially consistent with either market efficiency or mispricing.
In general terms, market efficiency implies that prices fully reflect available
information. To formalize this idea for empirical testing, Fama (1976) dis-
tinguishes between the probability distribution of returns perceived by “the
market,” based on whatever information investors view as relevant, and the
true distribution of returns conditional on all information. The market is
said to be (informationally) efficient if these distributions are the same. It
follows that, in an efficient market, investors should be aware of any cross-

* Lewellen is from the MIT Sloan School of Management and Shanken is from the Simon
Graduate School of Business Administration at the University of Rochester, and NBER. We are
grateful to Greg Bauer, John Campbell, John Cochrane, Kent Daniel, Eugene Fama, Gur Hu-
berman, Ravi Jagannathan, John Long, Bill Schwert, Rob Stambaugh, Avanidhar Subrahman-
yam, Jiang Wang, Zhenyu Wang, two anonymous referees, and especially René Stulz (the editor)
for helpful comments and suggestions. We also thank workshop participants at Columbia, Cor-
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sectional or time variation in expected returns—predictability simply re-
flects changes in the risk premium. Thus, researchers must judge whether
predictability is consistent with rational behavior or whether it is better
explained by irrational mispricing.

In this paper, we argue that there is a third potential source of predict-
ability: parameter uncertainty. When investors have imperfect information
about expected returns or cash flows, they must learn about the unknown
process using whatever information is available, which can be formally mod-
eled using Bayesian analysis. Parameter uncertainty necessarily affects prices
at a given point in time, through its impact on investors’ beliefs, as well as
the evolution of prices over time as investors learn more about the economy.
We show that this learning process can be a source of predictability in a way
that differs from other models with rational investors.

Research on parameter uncertainty typically focuses on the subjective dis-
tribution perceived by investors (which is relevant for portfolio decisions).
Our paper emphasizes, instead, the empirical properties of returns that arise
endogenously in equilibrium. We show that these properties can differ sub-
stantially from those perceived by rational investors. Empirical tests will
tend to find patterns in returns—predictability, excess volatility—that seem
to violate market efficiency even when all investors are rational. For exam-
ple, stock returns might appear predictable to an econometrician, or appear
to deviate from the Capital Asset Pricing Model (CAPM), but rational inves-
tors can neither perceive nor exploit this predictability. Researchers typi-
cally, or perhaps always, assume that any patterns found by empirical research
could be exploited by rational investors (ignoring transaction costs and data
snooping). Our results show that this does not have to be true.

A simple example illustrates the basic idea. Suppose that dividends are
ii.d. over time with unknown mean 8 and known variance o 2. By construc-
tion, then, dividends are serially uncorrelated and have constant volatility.
Any empirical test using dividends will reflect these true properties. Now
consider the process perceived by rational investors. From an investor’s per-
spective, the mean of the dividend process is random, represented by a pos-
terior belief about 8. Realized dividends provide information about future
dividends, the mean wanders around over time, and the perceived volatility
declines as the investor learns. The empirical properties clearly differ from
those perceived by investors. We show, for essentially the same reason, that
asset-pricing tests can find patterns in returns that are neither part of the
subjective distribution (as assumed by market efficiency) nor caused by ir-
rationality (as assumed by behavioral finance).

We develop these ideas more formally in a simple equilibrium model. In-
vestors have incomplete information about an exogenous dividend process,
which they learn about from observed cash flows. We initially assume that
all parameters are constant over time, but later allow the dividend process
to change (in which case, investors never fully learn the true distribution).
Investors are assumed to be rational and use all available information when
making decisions. As long as estimates of expected cash flows diverge from
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the true values, asset prices deviate from their values in the absence of
estimation risk. However, prices tend to move toward “fundamental” value
over time as investors update their beliefs. Through this learning process,
parameter uncertainty affects the predictability, volatility, and cross-
sectional distribution of returns.

In our benchmark model with perfect information, returns are unpredict-
able using past information. When investors learn about the cash-flow pro-
cess, returns become predictable both cross-sectionally and over time (from
the perspective of an econometrician, but not investors). For example, if in-
vestors begin with no information about the mean of the dividend process,
prices appear to react too strongly to realized dividends. Returns become
negatively related to past dividends and prices. In a fairly general sense, it
appears that this phenomenon is inherent in a model with parameter un-
certainty because investors’ “mistakes” eventually reverse as they learn more
about the economy. However, predictability can take the form of either re-
versals or continuations (or neither), depending on investors’ prior beliefs
and the cash-flow process.

Predictability in the model is fundamentally different from that in other
models with rational investors. Predictability arises solely from the learning
process, not from changes in investment opportunities. More importantly,
predictability is not perceived by investors. It exists in the true data-
generating process, and can be detected using standard empirical tests, yet
investors perceive constant expected returns. That cannot be true in models
with perfect information; predictability must be associated with changes in
the perceived risk premium. The difference is illustrated most easily when
investors are risk neutral. In our model, excess returns can be predictable
under the true data-generating process even when investors are risk neu-
tral. An econometrician, using observed returns, should expect to find pre-
dictability. In contrast, excess returns must be unpredictable if investors
have perfect information.

We emphasize that predictability is caused by the learning process; it is
not assumed as part of the model. The source of the predictability is straight-
forward. If the market’s best guess about expected dividends is, say, higher
than the true mean, the stock price will be inflated above its fundamental
value. Since future dividends have a lower mean than the market’s estimate,
investors will, on average, perceive a negative surprise over the subsequent
period. An econometrician, looking back, will find that relatively high prices
predict relatively low future returns. This story resembles the standard mis-
pricing argument, but reversals in our model are driven by completely ra-
tional behavior on the part of investors. In fact, investors know that returns
are negatively autocorrelated but cannot take advantage of it. They would
want to exploit this pattern by investing more aggressively when the price is
too low, but of course they cannot know when this is the case.

In short, our primary message is that parameter uncertainty drives a wedge
between the distribution perceived by investors and the distribution esti-
mated by empirical tests. We report numerical simulations, roughly cali-
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brated to U.S. data, which suggest that the effects can be economically large.
However, we hesitate to draw strong conclusions because the simulations do
not match all the characteristics of the U.S. market, and our point is not to
argue that parameter uncertainty necessarily explains specific asset-pricing
anomalies. Rather, we emphasize that many tests of market efficiency can-
not distinguish between a market with learning and an irrational market.
We believe that a world with parameter uncertainty is the appropriate bench-
mark for evaluating apparent anomalies.

Our results extend a growing literature on learning and parameter uncer-
tainty. Our cross-sectional results clarify the single-period models of Bawa,
Brown, and Klein (1979) and Coles and Loewenstein (1988). They argue that
estimation risk should not affect tests of the CAPM, contrary to the findings
of the current paper. In the continuous-time literature, Merton (1971) and
Williams (1977) show that parameter uncertainty creates a new state vari-
able representing investors’ beliefs. The hedging demand associated with
this state variable can cause deviations from the CAPM (see also Detemple
(1986), Dothan and Feldman (1986), and Gennotte (1986)). Our results are
different because investors attempt to hold mean-variance efficient port-
folios; it is their mistakes, not their hedging demands, that induce devia-
tions from the CAPM.

The time-series implications of our model expand on the observations of
Stulz (1987) and Lewis (1989). They point out that prices can appear to react
inefficiently to information simply because investors learn about the econ-
omy (see also Veronesi (1999)). Wang (1993) and Brennan and Xia (1998),
like the current paper, show that learning about an unobservable state vari-
able can increase return volatility. Timmermann (1993, 1996) shows that
parameter uncertainty might induce both predictability and excess volatil-
ity. We extend his work by analyzing an equilibrium model with fully ratio-
nal (Bayesian) investors, and we discuss the implications for market efficiency
and the cross section of expected returns. Finally, Kandel and Stambaugh
(1996), Barberis (2000), Pastor (2000), and Xia (2001) all discuss portfolio
choice with parameter uncertainty, but they do not analyze the equilibrium
implications of learning.

The paper is organized as follows. Section I describes the model and Sec-
tion II derives equilibrium. Sections III and IV analyze time-series and cross-
sectional tests of predictability, respectively. Section V generalizes the model

to allow for time-varying parameters, and Section VI presents numerical
simulations. Section VII concludes.

I. The Model

We present a simple overlapping-generations model of the capital market.
Many features of the model are borrowed from DeLong et al. (1990), who
study how noise traders affect prices. Like Delong et al., we allow investors’
beliefs to diverge from the true distribution. In our model, investors are
rational and use all available information when making decisions.



Learning, Asset-Pricing Tests, and Market Efficiency 1117

A. Assets

There exists a riskless asset which pays real dividend r in every period,
t =1,...,00. Following DeLong et al. (1990), the riskless asset is assumed to
have perfectly elastic supply: It can be converted into, or created from, one
unit of the consumption good in any period. As a result, its price in real
terms must equal one and the riskless rate of return equals r.

The capital market also consists of N risky securities. These assets each
have one unit outstanding and pay real dividend d,, an N X 1 vector, in
period ¢. We initially assume that dividends are i.i.d. over time and have a
multivariate normal distribution (MVN):

d, ~ MVN[6,3], 1)

where 6 is the mean vector and ¥ is a nonsingular covariance matrix. Notice
that the parameters are assumed to be constant. This implies that estima-
tion risk vanishes as ¢ goes to infinity. In reality, the economy evolves over
time, so parameter uncertainty is unlikely to disappear even after a long
history of data. Section V captures this idea by generalizing the model to
include unobservable shocks to the parameters. The model with constant
parameters is much easier to analyze and, we believe, conveys the intuition
more effectively.

The i.i.d. assumption is not intended to be realistic, but dramatically sim-
plifies the exposition. Again, we later relax this assumption and allow div-
idends to follow a geometric random walk. We have also explored a model
with autocorrelated dividends, and the qualitative results appear to be sim-
ilar. Throughout the paper, investors are assumed to know the form of the
distribution function (i.i.d. and normal), but may not know its parameters.

B. Investors

Individuals live for two periods, with overlapping generations. Following
DeLong et al. (1990), there is no first-period consumption, no labor supply
decision, and no bequest. Individuals decide only how to invest their exog-

enously given wealth. We assume that the representative investor has con-
stant absolute risk aversion:

Uw) = —exp(=2yw), (2)

where w is second-period wealth and y > 0 is the risk-aversion parameter.
This setup ignores the intertemporal nature of the investment decision, which
limits the way learning can affect equilibrium. Merton (1971) and Williams
(1977) show, for example, that learning creates a state variable representing
investors’ current beliefs. Portfolio decisions will contain a corresponding
hedging component if investors live for many periods. Because investors in
our model are short-lived, a similar hedging demand does not arise.
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The investor maximizes expected utility, where the expectation is based on
the subjective belief about next-period wealth. Let p, be the vector of risky-
asset prices and x, the vector of shares held in the portfolio. If prices and
dividends are normally distributed, the investor will choose

1
X, = 2_7 [varj(p,+1 + dt+1)]_1[Ets(pt+1 +d;q) — (1 +1r)p,], 3)

where E; and var; denote the subjective expectation and variance at £.1 (We
always label subjective moments with an s superscript.) The first term in
brackets is the payoff covariance matrix and the second term is the expected
payoff in excess of the riskless return. Investors attempt to hold mean-
variance efficient portfolios, so x; is the tangency portfolio under the sub-
jective distribution.

Equilibrium in the economy, which treats current and future prices as
endogenous, must satisfy (3). In addition, demand for the risky assets must
equal the supply in every period. Setting x,” = ¢, where ¢ is an N X 1 vector
of ones, and solving for price yields

1
Py = m LE; (i1 + dis1) — 2y vari(pyyq + dyyq)e]. )

This equation gives the equilibrium current price in terms of next period’s
price, which in turn will be endogenously determined.

II. Equilibrium

We derive equilibrium with and without parameter uncertainty. We as-
sume in both cases that investors anticipate how prices react to new infor-
mation. In other words, equilibrium satisfies the rational-expectations property
that the pricing function perceived by investors equals the true pricing func-
tion (Lucas (1978)). This condition does not imply, however, that investors’
subjective belief about the distribution of returns equals the true distribu-
tion. The two distributions are the same only with perfect information.

A. Perfect Information

Suppose, initially, that investors know the dividend process. Since divi-
dends are i.i.d., a natural equilibrium to look for is one in which prices are
constant, or p, = p. This implies that E,(p,.; + d,.1) =p + 6 and var,(p,.; +
d;+1) = 3. Substituting into (4) and solving for price yields

! Prices are normally distributed in equilibrium because they are a linear function of divi-
dends (see equation (8)). Some of our simulations later assume that investors are risk neutral
and dividends are log-normally distributed.
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1 2y
p=—-6—-—2u. (5)
r r

Price equals expected dividends discounted at the riskless rate minus an
adjustment for risk. An asset’s systematic risk, 2, is important, rather than
its total variance. The market portfolio has value

1 2y
pM=L'P=_5M__0'112/1, (6)

r r
where the market’s expected dividend and variance are 8;; =¢'6 and o5 = 3.
Equation (6) also gives the price of a single risky asset when N = 1 (compare

(5) and (6)). We will focus on the market portfolio when we discuss the time-
series implications of learning.

B. Parameter Uncertainty

We now relax the assumption that investors know the dividend process.
Suppose, in particular, that investors begin with a diffuse prior over 8. Al-
though this prior permits 8 to be negative, it is the standard representation
of “knowing little” about the mean and simplifies the algebra. We later con-
sider informative priors, which can have important effects on price behavior.
Our initial results should, therefore, be viewed as illustrative, but not com-
pletely representative. For simplicity, we continue to assume that investors
know the covariance matrix of dividends. Previous research finds that un-
certainty about the covariance matrix is relatively unimportant (e.g., Coles,
Loewenstein, and Suay (1995)), and we doubt that it would affect our basic
conclusions.

Investors update their beliefs using Bayes rule, incorporating the infor-
mation in observed dividends. With a diffuse prior, the posterior distribution
of § at time ¢ is MVN[d,, (1/¢).], where d, is the vector of average dividends
observed up to time ¢. The subjective, or in Bayesian terms “predictive,”
distribution of dividends is

- t+1
diq ~° MVN[dt, e E]. (7)

An investor’s best guess about the mean is just the average realized divi-
dend. The covariance matrix reflects both the true variance, 3, and uncer-
tainty about the mean, 3/t

Rational expectations requires not only that investors are Bayesian, but
also that they anticipate how prices react to new information. Assuming
rationality, Appendix A shows that the equilibrium price is

N =

d, — 2vf ()34, ®)
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where f(¢) is a deterministic function of time. Price is similar to the model
with perfect information. The mean of the predictive distribution, d,, re-
places & in the first term and f(¢) replaces 1/r in the second term. The func-
tion f(¢) decreases as t gets larger and approaches 1/r in the limit, implying

that price eventually converges to the price with perfect information. The-
market portfolio has value

1.
Py = ; dM,t - 27f(t)0'12u, 9

where &M,t = 1/d, is the average dividend on the market portfolio from ¢ = 1
to £. Again, it is straightforward to show that the general model collapses to
(9) when N = 1.

Several colleagues have noted that the pricing function in equation (8)
could also be generated by a model with nonstationary dividends and no
estimation risk. In particular, suppose that investors have perfect informa-
tion and the ¢true mean of the dividend process evolves over time as a func-
tion of average dividends (that is, 8,,, = d,). In this case, the pricing function
would be identical to the price in our model. Notice, however, that prices
should evolve quite differently in the two models. With a changing dividend
process, gross returns would be positively related to lagged dividends and
prices would exhibit no tendency to revert to a long-run mean. The opposite
is true in our model, as we show in the next section.

II1. Asset-Pricing Tests: Predicting Returns

Equilibrium is determined by investors’ beliefs. Empirical tests depend,
instead, on the true data-generating process. In this section, we study the
time-series behavior of prices and returns, highlighting the difference be-
tween the properties perceived by investors and the properties of empirical
tests. The next section considers the cross-sectional distribution of returns.
In both cases, the exact nature of predictability is somewhat specific to the
current model, but our conclusions about market efficiency are more general.

We now consider a model with one risky asset, interpreted as the market
portfolio. The stock price is given by equation (9); we drop the subscript M
throughout the section for convenience. Also, to focus on the main ideas, we
assume in this section that investors are risk neutral. To see why, notice
that the change in price from ¢ to ¢ + 1 equals

1 _ _
Pitv1 =P = ; (dyv1 —dy) +2y[f(8) —f(t + D). (10)

The price change contains two components. The first term is random and
reflects changes in beliefs about expected dividends. The second term is de-
terministic and arises because estimation risk declines steadily over time.
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When we talk about predictability, the deterministic portion serves only to
add an additional, nonrandom component to the equations. It does not affect
any of the results and drops out if investors are risk neutral.

A. Investor Perceptions versus the True Data-Generating Process

Before we discuss predictability, it is useful to emphasize the difference
between beliefs and the true data-generating process. The standard defini-
tion of market efficiency says the two should be the same. That definition is
fine if investors have perfect information, but it breaks down with param-
eter uncertainty. The reason is simple: From an investors’ perspective, the
underlying parameters are random and fluctuate over time as new informa-
tion arrives. For an empirical test, however, the data-generating process
depends on whatever the actual, but unknown, parameters really are. The
true process does not have random parameters. As a consequence, the em-
pirical properties of returns can differ significantly from the properties per-
ceived by investors.

The difference can be seen clearly in the pricing process. Under the sub-
jective distribution, prices follow a martingale:

El[pis1—p:] = 0. (11)

Prices react to changes in (subjective) expected dividends, and it must be the
case that investors cannot predict these changes. In contrast, prices do not
wander completely randomly under the true data-generating process; they
must eventually converge to “fundamental” value. If current beliefs about
expected dividends are greater than the true mean, prices are also tempo-
rarily inflated and will drop in the future. If current beliefs are below the

true mean, prices are temporarily depressed and will eventually rise. Thus,
under the true distribution,

1 _
E(pi+1—p) = m (6 —dy). (12)

Fundamentally, the difference between (11) and (12) is that dividends are
truly drawn from a distribution with a constant mean. The subjective dis-
tribution, on the other hand, views the mean as a random variable. This
difference drives all of the following results on predictability, excess volatil-
ity, and tests of market efficiency.

To illustrate the ideas, Figure 1 depicts a sample price path for the risky
asset. The figure assumes that investors are risk neutral and the riskless
rate is 0.05. Dividends have mean 0.05 and standard deviation 0.10, taken to
be similar to the dividend yield and volatility of dividends on the market
portfolio. With perfect information, the price of the risky asset would equal
one (fundamental value). The price with estimation risk depends on realized
dividends, which we randomly draw from a normal distribution. The figure
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Figure 1. Equilibrium price of the risky asset. This figure illustrates a sample price path
for the risky asset when the dividend process is known (fundamental value in the figure; see
equation (6) in the text) and when investors must estimate expected dividends (actual price; see
equation (9)). The riskless rate is 0.05, dividends have true mean 0.05 and standard deviation
0.10, and investors are risk neutral. Without estimation risk, the price of the risky asset is one.

With estimation risk, the price depends on past average dividends, which we randomly select
from a normal distribution.

shows that the price of the risky asset tends to revert towards fundamental
value. Empirically, prices will not appear to be a random walk—they even-
tually converge to one—even though price changes are completely unpre-
dictable by investors. Notice, also, that we do not need to know the underlying
parameters to observe mean reversion in prices. All that is important is that
prices converge to some value.

B. Predicting Returns

As observed above, prices follow a martingale under the subjective distri-
bution. Realized returns at ¢ + 1 are given by2

1 _
Ry 1 =diq + r_(t+—1)_ (dir1— dy). (13)

The first term equals the realized dividend and the second term equals the
change in price. The price change reflects new information about expected
dividends, given by the investor’s dividend surprise, d,.; — d,. Although the
price change is not predictable by investors, it is predictable under the true

2 For simplicity, we examine the predictability of gross returns rather than rates of return.
The analysis with rates of return is more difficult because it involves ratios, but the qualitative
results are similar.
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data-generating process. Given the true mean of the dividend process, the
expected return is

E, [Rt+1] =6+ (6 — Czt) (14)

rit+1)

Price revisions, and hence returns, are negatively related to past cash flows.
Prices depend on the mean dividend perceived by investors, d,; when past
dividends have been high, future expected returns are low.

Equation (14) implies that prices, dividends, and past returns will all cap-

ture time variation in expected returns. For example, the autocovariance of
returns is given by3

1
cov[R,,R;,1] = _m o’ (15)

Because of the learning process, past mistakes eventually reverse and re-
turns are negatively autocorrelated. A researcher who ignores estimation
risk, and observes that business conditions do not change, would come to the
incorrect conclusion that investors overreact: higher returns today predict
lower returns in the future. Similarly,

1
cov[d,,R,.1] = e D o’ (16)

A high dividend today predicts lower future returns, which would suggest
that investors naively extrapolate recent dividend performance into the fu-
ture (e.g., Lakonishok, Shleifer, and Vishny (1994)). However, investors are
completely rational in our model and the predictability is driven entirely by
parameter uncertainty.

These results imply that an econometrician will tend to find mean rever-
sion in stock prices; past prices and dividends are both negatively correlated
with future returns under the true data-generating process. We later present
detailed simulations, allowing for changing parameters and nonstationary
dividends, but the basic idea is illustrated by Figure 1. Estimation error
eventually reverses, so a researcher looking at the data will, on average,
find mean reversion in returns. We have also estimated, using simulations,
the correlation between excess rates of return and lagged average dividends.
For ¢ = 10 to 80 (i.e., 70 “years” of data), the correlation with perfect infor-
mation is —0.136 (this is negative because of small-sample bias). It drops to
—0.259 when investors begin with diffuse priors. The current model is not

3 This covariance is time dependent because estimation risk declines over time. We will

break the strong connection between time and predictability in Section V when we allow the
parameters to change.
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realistic, so we do not take the estimates very seriously, but they do suggest
that parameter uncertainty can have a large impact on empirical tests. In-
vestors ignore the negative relation between returns and past dividends be-
cause it provides no useful information about future expected returns (a point
we will return to shortly).

Researchers generally assume that lead-lag correlations, like those above,
imply either time variation in the (perceived) risk premium or irrationality.
Parameter uncertainty provides a third explanation. Unlike other models
with rational investors, investors do not perceive that the risk premium var-
ies over time. To see this clearly, consider the unexpected portion of returns,
UR,.1 =R,.; — E/[R,;1]. Unexpected returns simply equal excess returns
since investors are risk neutral. From (13):

UR,;, = [1 + m](dt+l —d,). (17)

It follows that

E,[UR;1] = [1 + ](5 - Czt) (18)

r(t+1)

Like total returns, the unexpected portion of returns is correlated with past
prices and dividends. It is precisely this result that differentiates our model
from other models with rational investors. Indeed, a standard result in fi-
nance, and one that underlies all tests of market efficiency, is that forecast
errors should be uncorrelated with past information if investors are rational.
Equation (18) shows that this does not have to be true.

The apparent predictability of forecast errors is consistent with rational
expectations because it is based on the unknown, true data distribution.
Investors never know whether past dividends have been above or below the
true mean. However, as investors learn more about expected cash flows,
they correct prior mistakes and prices converge to fundamental value. A
researcher, looking back, will observe a negative relation between prices and

unexpected returns (as illustrated by Figure 1) that seems to violate market
efficiency.

C. Interpretation

The last paragraph notes that a researcher, looking back, can observe the
predictability of returns. Predictability in the true data-generating process
shows up in realized returns, and standard empirical tests (like predictive
regressions) can detect this predictability. Notice, however, that an econo-
metrician, like investors in the model, cannot actually forecast future price
movements. Predictive regressions implicitly use information that investors
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do not have when portfolio decisions are made (since they use an entire time
series of data). Looking forward, regressions estimated from past data do
not help to forecast future returns.+

The distinction between “in-sample” and “out-of-sample” predictability is
interesting. When researchers say that returns are predictable, we typically
mean that returns are correlated with ex ante observable variables. Our
model generates this sort of predictability, yet investors cannot actually fore-
cast returns. We are unaware of any other model that makes this prediction.
These results provide strong motivation for designing tests of out-of-sample
predictability (e.g., Bossaerts and Hillion (1999) and Goyal and Welch (1999)).
Although such tests are sometimes reported, the usual motivation is to see
whether investors could have learned about predictability early enough to
take advantage of it. Our results are different: The model shows why pre-
dictability arises in the first place (learning creates the predictability), and
investors are aware of the predictability but cannot take advantage of it.

More importantly, the simple dichotomy between in-sample and out-of-
sample predictability is misleading. The learning process has subtle effects
on asset-pricing tests that go beyond the simple observation that predictive
regressions use information not available to investors. Because this point is
important, we provide three additional examples to illustrate how param-
eter uncertainty can affect asset-pricing tests:

1. With parameter uncertainty, we can devise an implementable trading
strategy that appears to generate excess returns. The strategy earns
abnormal profits in a frequentist sense, but not from the Bayesian
perspective of investors. The strategy is simple: Hold the riskless asset
if average dividends have been above some arbitrary cutoff value K

and, otherwise, hold the stock. The excess return from the strategy at
t+ 1is

M1 = A (Bypq — D), (19)

where A, equals one if d, < K and zero otherwise. Taking unconditional
expectations, the expected profit is

E[m 1] = c-prob(A, =1)-E[5 — Cztl(zt <K], (20)

where ¢ = 1 + 1/r(¢t + 1). The last term is just the expected value
of a truncated normal distribution. It is positive for any K since
E[d,|d, < K] < & (e.g., Greene (2000, p. 899)). Thus, we have found a

4 To see why, consider our result that lagged dividends forecast unexpected returns. We
showed that cov(d,, UR,,,) is negative, or equivalently, E[(d, — 8) X UR,,,] < 0. To use this
correlation to forecast returns, an investor needs to know whether d, is greater than or less

than 6. Since our best guess is that d, = §, we cannot actually predict whether returns will be
high or low.
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simple market-timing strategy that earns abnormal profits. An econo-
metrician who implements the strategy in real time should expect to
find (in a frequentist sense) excess returns, but a Bayesian investor
perceives zero profits.

This apparent contradiction highlights the difference between fre-
quentist empirical tests and Bayesian decision making. The expecta-
tion above is based on repeated sampling of dividends and prices; it
averages across all possible outcomes for realized dividends (given a
fixed 8). The profitability of the strategy is driven by the simple ob-
servation that, in repeated sampling, if d, is less than K, then on av-
erage d, will also be less than the true mean. A Bayesian investor, in
contrast, must make decisions conditional on a given draw of the div-
idend process. The investor views 6 as a random variable and, condi-
tional on past dividends, the investor’s belief about & is always centered
around d,; from the investor’s perspective, d, is just as likely to be
above as below 8. The hypothetical repeated-sampling behavior of prices
is irrelevant. Thus, a frequentist empirical test views & as fixed and
dividends as random, while a Bayesian investor reverses these roles
(see Berger (1985) for an extensive discussion of these issues).

2. Although we are getting a bit ahead of ourselves, the next section shows
that stock returns are cross-sectionally predictable: The slope coeffi-
cient in Fama-MacBeth regressions, which estimate the cross-sectional
correlation between next period’s returns and this period’s prices, is
expected to be negative. In this regression, the researcher only uses
information available to investors. A negative coefficient on lagged price,
for example, says that the relative prices of two firms, both of which
are observed today, tell us something about their relative returns in
the future. There is no sense in which a cross-sectional regression uses
forecasting information that investors do not have. The idea that re-
turns are predictable in-sample, but not out-of-sample, breaks down in
cross-sectional regressions.

3. We observed above that predictive regressions are expected to find in-
sample predictability. Intuitively, the reason is that regressions implic-
itly measure the independent variable relative to its full-sample mean,
thus using information not available to investors. We can fix this “prob-
lem” by using a moment condition that does not rely on the full-sample
mean. For example, suppose we test whether E{p, X UR,, ] = 0. This
test, similar to many GMM tests of rational expectations models, focuses
on the orthogonality between return surprises and lagged information.5
With perfect information, the moment condition must be zero. However,
with estimation risk, E [ p, X UR, ] = cov(p,, UR,,,) <0, where the equal-
ity follows from the fact that UR,; has unconditional mean zero. This

5 Note that, in our model, unexpected returns simply equal excess returns because investors

are risk neutral. UR,. , does not depend on unknown parameters that need to be estimated, as
it would in a typical GMM setting.
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test satisfies the requirement that the econometrician only uses past in-
formation to predict returns; in contrast to predictive regressions, lagged
prices are compared to zero rather than to the full-sample mean. Thus,
even in a time-series setting, an out-of-sample test can find predictabil-
ity (much like the market-timing example).

These examples show that parameter uncertainty can affect empirical tests
in surprising ways. Even a test based on an implementable trading strategy
is expected to find, from a frequentist perspective, abnormal returns. Re-
searchers always assume that, in the absence of trading costs or sampling
error, any patterns found in the data should be exploitable by rational in-
vestors. This does not have to be true: The apparent predictability in our
model cannot be used to improve investment decisions.

D. Volatility

Return predictability and volatility are closely related (e.g., Campbell (1991)).
Given our results above, it is clear that parameter uncertainty will also
affect volatility. We briefly comment on a few results here. In the model with
perfect information, prices are constant, and the variance of returns equals
the variance of dividends, o?. With parameter uncertainty, the (true) con-
ditional variance of price is

1 2
var,[p;i1] = [r(t n 1)] o?, (21)

and the unconditional variance is

1

var[p,.1] = R o’ (22)

Parameter uncertainty increases both the conditional and unconditional vari-
ances of prices. Similar to our earlier results, parameter uncertainty gives
the appearance of overreaction. Again, “excess” volatility simply reflects
learning; volatility is high precisely because investors rationally update
their beliefs.

In the model, a modest amount of parameter uncertainty will create sub-
stantial price volatility. Suppose, for example, that investors are risk neutral,
the riskless rate is 0.05, and dividends have mean 0.05 and standard devia-
tion 0.10. (These are the values used in Figure 1.) Using these parameters, the
value of the risky asset equals one when 6 is known. With parameter uncer-
tainty, the standard deviation of p, equals 2/+/%. This remains significant as a
percentage of fundamental value for rather large t. For example, when ¢ is 100,
a two-standard-deviation confidence interval is 80 percent of fundamental value.
Yet, after this many periods in the model, the subjective standard deviation of
dividends is less than 1 percent greater than the true standard deviation.



1128 The Journal of Finance

Notice that price movements are not explained by subsequent changes in
dividends. In fact, prices are completely uncorrelated with future dividends;
prices are backward looking and appear to overreact to information. As a
result, prices violate the variance bounds that have been the focus of much
empirical research. For example, Shiller (1981) argues that an immediate
consequence of optimal forecasts is that

var(p,) = var(p;), (23)

where p; is the ex post rational price, or the price based on realized, rather
than expected, dividends. That is, p; is given by

=3 (1+ Ty dee = 2 ) (24)

With perfect information and rational investors, the bound holds because p;
equals the actual price plus a random, unpredictable forecast error. But we

saw that, with learning, forecast errors can be negatively related to price. In
the current model, the variance of p; is

& 1 1
D= ——o’=—5——0> 25
var(p;) PN i e (25)

Comparing this to (22), we see that the volatility bound will be violated for
t = 1 + 2/r. Perhaps more directly, prices violate the basic premise of the
volatility-bound literature, that price changes should only reflect changes in
true expected dividends. With learning, new information about future divi-
dends does not have to correspond to changes in the true distribution.

The model also provides an interesting perspective on Campbell’s (1991)
variance decomposition of returns. He shows that return movements can be
decomposed, mathematically, into news about dividends and news about ex-
pected returns. In our model, all movement in prices is due to dividend news
(as perceived by rational investors). The discount rate is constant, so there is
no variation in perceived expected returns. Yet, in the true data-generating
process, the mean of the dividend process is fixed; the data should provide
no evidence that (true) expected dividends change over time. Price volatility
will appear, to an econometrician, to be driven solely by innovations in ex-
pected returns. Again, asset-pricing tests might not accurately capture the
underlying perceptions of investors.

IV. Asset-Pricing Tests: The CAPM

Section III showed that, with parameter uncertainty, empirical tests can
find predictability not perceived by investors. We now return to the model
with many assets and analyze the cross-sectional behavior of returns. Bawa
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and Brown (1979) and Coles and Loewenstein (1988) argue that the CAPM
should continue to hold with estimation risk. That is true in our model as
well, but only for the perceived, not the empirical, distribution of returns.

A. Covariances and Betas

We start with a few results on covariances and market betas. With perfect
information, the covariance matrix of returns equals the covariance matrix
of dividends, X. Introducing parameter uncertainty scales up the covariance

matrix. Specifically, with parameter uncertainty, the (true) covariance ma-
trix of returns is

1 2
var,[R, ] = [1 + it 1)] 3. (26)

Equation (26) shows that parameter uncertainty increases all variances and
covariances proportionally. As a result, estimation risk has no effect on mar-

ket betas (for gross returns). With and without estimation risk, the vector of
betas equals

1 1
B = m cov(R;, Ry ) = E—L . 27

It is straightforward to show that the subjective covariance matrix equals
the true covariance matrix multiplied by (¢ + 1)/¢. This implies that per-
ceived and true betas are the same.®

B. Expected Returns and the CAPM

With and without parameter uncertainty, investors attempt to hold mean-
variance efficient portfolios. It is immediate that the CAPM must hold un-

der the subjective distribution. In terms of gross returns, the CAPM says
that

E/[R,.1]=rp, + B[Ets(RM,t+l) - rpM,t]- (28)

This equation can be verified by substituting for equilibrium prices and sub-
jective expected returns, derived earlier. The equation does not imply that
the CAPM should hold empirically: Empirical tests depend on true, not sub-

6 These results are an artifact of the diffuse prior. With an informative prior, perceived and
true covariance matrices may not be proportional and neither has to be proportional to 2 (see
Clarkson, Guedes, and Thompson (1996) and Lewellen and Shanken (2000)).
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jective, expected returns. To understand the properties of empirical tests, we
consider ex post deviations from the CAPM, given by

a1 =R, 1 —1p, — B[RM,t+1 - rpM,t]- (29)

The vector a,, ; is similar to the vector of unexpected returns, but the real-
ized market return enters (29) rather than the expected market return. By
examining a,,,, we eliminate predictability that is related to the aggregate
market.

Deviations from the CAPM must be unpredictable under the subjective
distribution:

Efla;1]=0. (30)

With perfect information, market efficiency implies that the true expecta-
tion is also zero. That restriction, of course, forms the basis for empirical
tests of the CAPM. Cross-sectional regressions, like those in Fama and Mac-
Beth (1973), test whether firm characteristics predict cross-sectional varia-
tion in @; ;.. The time-series approach of Gibbons, Ross, and Shanken (1989)
tests whether the unconditional expectation of a,,, is zero (which follows
from the law of iterated expectations). Finally, various asset-pricing tests
directly examine the conditional expectation of a,,, (e.g., Harvey (1989) and
Shanken (1990)).

With parameter uncertainty, the true expected value of @, ; does not have

to be zero. Substituting for prices and returns in (29) and taking expecta-
tions yields

Ela;q]= _[1 + :‘[(‘zt —8) — (Cth — 8u)B]. (31)

ri¢+1)

Deviations from the CAPM are negatively related to past prices and divi-
dends. In particular, for any asset:

1
r(t+ 1) ] — Lvar(di) = Bicov(d;, dy)], (32)

covp; ;,0; 141] = _[1 +
where the last term in brackets is the residual variance when the asset’s
dividend is regressed on the market dividend. The empirical properties of
a; ;+ are similar to the behavior of unexpected returns. Again, we see that
parameter uncertainty induces price reversals and apparent overreaction.
When investors’ best guess about a stock’s expected dividend is above the
true mean (after adjusting for marketwide mispricing), price is inflated above
its fundamental value and expected returns are lower than predicted by the
CAPM. These properties imply that empirical tests will tend to reject the
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CAPM even though it works perfectly from the perspective of rational in-
vestors. The apparent deviations from the CAPM cannot be used to improve
portfolio decisions.

Equation (32) is essentially a time-series relation. Predictability arises
because investors do not know whether past dividends have been above or
below the true mean. At any point in time, however, investors do observe
whether a security’s dividends are above or below the cross-sectional aver-
age. Our initial guess, then, was that deviations from the CAPM would not
be cross-sectionally related to lagged prices: If cross-sectional variation in
a; ;+1 is related to the observable quantity p; ,, it would seem that investors
could use this information to earn abnormal returns. Surprisingly, this in-
tuition is wrong. In sample, the cross-sectional relation between a; ,,; and
P 18

1
Covtcil[pi,taai,t+1] = Kf 2 (ai,t+1 - @fil)(pi,t — Di). (33)

Taking unconditional expectations yields

1
E[COVtcil(pi,t,ai,Hl)] = N 2 COV(ai,H—l,pi,t) <0, (34)

which is negative because every covariance term is negative. In the presence
of estimation risk, lagged dividends and prices explain cross-sectional vari-
ation in expected returns (after controlling for beta). Investors understand
the negative cross-sectional relation, but they cannot use this information to
be better off.

We find this result paradoxical. To gain some intuition, consider the decision-
making process of a rational investor. Implicitly, the expectation in (34) in-
tegrates over all possible price paths from time 1 to ¢ + 1. However, at time
t, the conditional cross-sectional relation can be either positive or negative,
depending on the difference between d, and 8. In other words, conditional on
observing d,, the cross-sectional covariance depends on the true value of §.
Investors understand this dependence, and their beliefs about § determine
their investment choices. They integrate over the posterior distribution of §
to make portfolio decisions. The resulting belief about a,.,; will always have
mean zero. The point is simply that investors do not ignore the relation
between dividends and returns, but their best forecast of a,,; at any point in
time is always zero.

Alternatively, we can think about this in terms of an individual asset.
Suppose that an asset has a relatively high price compared with other stocks.
Does this imply that the asset is overvalued relative to its fundamental value?
The answer depends, of course, on the actual value of §;, which is unknown.
Integrating over the posterior belief about §;, an investors’ best guess at all
times is that the asset is fairly priced. Yet, in hypothetical repeated sam-
pling, the asset with the highest price will, on average, be overvalued. This
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puzzle again highlights the distinction between the conditional nature of
Bayesian decision making (conditional on the observed prices) and the fre-
quentist perspective of classical statistics. For a Bayesian investor, hypo-
thetical repeated sampling is irrelevant to the portfolio decision, which must
be made after observing only a single realization of prices.

To illustrate the cross-sectional results, we simulate prices and returns in
the model. Similar to the example in Section III, we assume that investors
are risk neutral and the riskless rate is 0.05. In addition, all risky assets,
with N = 15, have true expected dividends equal to 0.05. Hence, all prices
equal one in the absence of estimation risk. When 6 is unknown, security
prices depend on realized dividends, which we randomly generate from a
MVN distribution. To provide a reasonable covariance matrix, we estimate
the return covariance matrix for 15 industry portfolios formed from all stocks
on the Center for Research in Security Prices (CRSP) database.

Both the time-series and cross-sectional behavior of returns reveal the
price-reversal effect of estimation risk. Take, first, one randomly selected
simulation. For ¢ = 10 through 110, the correlation between total return and
lagged price is negative for every security, with a mean correlation of —0.21.
Deviations from the CAPM also appear predictable based on lagged prices.
In time series, the average correlation between a; ,.; and p; , is —0.16, and
14 out of the 15 correlations are negative. Cross-sectionally, the relation
between a; ,,, and p; , is significantly negative in Fama—MacBeth style re-
gressions, with a ¢-statistic of —3.97. On average, an increase in price from
one standard deviation below to one standard deviation above the cross-
sectional mean leads to a —0.042 change in a; ;. Since prices are generally
close to one, this would imply that Jensen’s alpha, based on rates of return,
decreases by approximately 4.2%. This example is typical. Across 2,500 sim-
ulations, Fama—MacBeth regressions produce an average t-statistic of —3.75
with a standard deviation of 0.94. Although investors attempt to hold mean-
variance efficient portfolios and use all available information when making

decisions, expected returns differ substantially from the predictions of the
CAPM.

V. Parameter Uncertainty in the Long Run

The analysis above shows that parameter uncertainty can, in principle,
substantially affect asset-pricing tests. The model makes a number of
unrealistic assumptions—diffuse priors, i.i.d. dividends, and constant
parameters—which make it difficult to judge the empirical significance of
estimation risk. We now relax these assumptions to make the model a bit
more realistic. The next section presents simulations to suggest the practical
importance of parameter uncertainty.

A. Informative Priors

Our goal is a model in which parameter uncertainty remains in the long
run. This requires that the parameters change over time, so investors never
learn the true dividend process. Since investors should have some informa-
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tion about changes in the parameters, the model inherently gives rise to
informative priors. Therefore, as a first step, we discuss the role of infor-
mative priors in the basic model.

Diffuse priors have two important effects on the model. First, investors’
beliefs are determined entirely by past realized dividends. With informative
priors, investors would put some weight on their initial information and less
weight on the data. Second, investors’ beliefs about one asset depend only on
the realized dividends of that asset. They do not depend at all on the real-
ized payoffs of other securities. With an informative prior, dividends on as-
sets with relatively high amounts of prior information can be useful in valuing
other assets. We focus on the first issue in this section; Lewellen and Shan-
ken (2000) discuss the second issue in detail.

Consider the model with one risky asset. Assume that the variance of the
dividend process, o2, remains known, and suppose that investors begin with

. some information about the mean. In particular, prior beliefs are centered
around some 8* and have variance o %/h, where h is a measure of prior in-
formation. Writing the variance in this form is simply for notational conve-
nience; a variance equal to o?/A means that prior information is equivalent

to a sample of A dividends. With this prior, the investor’s belief about divi-
dends at time ¢ is

J SN{ h 5% 4 ¢ 7 t+h+1 ﬂ (35)
1 t+h trn v n 7|

Investors shrink their best guess about expected dividends toward their prior
mean, and the variance reflects both the volatility of dividends, o2, and
uncertainty about the mean, o%/(t + k). It is clear that the prior mean exerts
a permanent, yet diminishing, influence on beliefs. If the prior mean devi-
ates from §, investors’ beliefs are biased away from the true value. As before,
beliefs eventually converge to the true distribution.

Equilibrium takes nearly the same form as the original model. Price now
reflects prior beliefs as well as the information in realized dividends. Denote

the mean of the subjective distribution as m,. At time ¢, the price of the risky
asset equals

1
pt=;mt—2’yf(t+h)02
S T S PP (36)
Crt+h Y rt+h Y 75

where f(t) is defined in Appendix A. With informative priors, price contains
a new term corresponding to the initial belief about expected dividends. The
time-series properties of prices will be determined by m,. Prior information
anchors price to the investor’s initial guess, but does not have a stochastic
effect on prices. As a result, in the model with fixed parameters, informative
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priors have little effect on our earlier conclusions. Returns continue to be
negatively related to past prices and dividends. For example,

¢

Cov[ptrRH—l] = _rg(t + h)z(t +h+ 1) 02, (37)

which is negative but smaller than the expression with diffuse priors (h = 0).
This result is quite intuitive: Prior information basically adds & periods to
the model before time zero.

We should add an important caveat: Informative priors can play a larger
role if the parameters change over time. Investors may appear to react slowly
to changes in the dividend process (see the next section). In addition, even in
the current model, forecast errors are all expected to have the same sign
because of the permanent influence of the prior mean. Although the influ-
ence is nonstochastic and does not affect serial correlation in returns, it
could create the appearance of underreaction in some contexts. For example,
Lewis (1989) argues that a similar phenomenon accounts for the persistent
forecast errors observed in the foreign exchange market in the 1980s.

Informative priors can also play a more important role with many assets.
Lewellen and Shanken (2000) show that, with informative priors, the cross-
sectional relation between returns and lagged prices can be either positive
or negative. Investors can appear to update their beliefs too slowly because
they place less weight on the data and more on their prior beliefs. In addi-
tion, if investors have more information about some securities than others,

empirical estimates of beta may not fully capture the risk perceived by
investors.

B. Renewing Parameter Uncertainty

Our basic model has the unattractive feature that parameter uncertainty
steadily diminishes. We assumed that the dividend process is fixed, so in-
vestors never lose information. In this section, we extend the model to in-
clude unobservable shocks to the true parameters. We consider a model with
one risky asset because the section seems most applicable to aggregate re-
turns. At the microeconomic level, firms continually appear and disappear
from the stock market. It is not clear that the long-run implications of es-
timation risk are relevant for individual stocks.

There are many ways to prevent parameter uncertainty from vanishing in
the limit. We choose a particularly simple form of “renewal” to illustrate the
ideas. The model remains the same with one exception: We now assume that
the true mean of the dividend process changes at known, fixed intervals.
Specifically, every K periods, the mean is redrawn from a normal distribu-
tion with mean 6* and variance ¢2. Thus, the model is essentially a se-
quence of short “regimes” that look like our basic model. We have analyzed
alternative models in which (1) the length of the intervals is random rather
than fixed, and (2) the true mean of the dividend process follows a persistent
process. The qualitative conclusions from these models appear to be similar.
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After an infinite number of periods, it is clear that investors should learn
the distribution from which the short-run mean is drawn. Therefore, in the
limit, investors’ priors at the beginning of each regime would be N[6* 2].
Although we analyze these priors as a special case, we do not think that it
is either the most realistic or interesting scenario because it represents an
extreme amount of learning. Instead, we consider the more general beliefs
N[8%,072], which have the same mean as the actual distribution but not
necessarily the same variance. Permitting the variances to be different can
be justified on several grounds.

First, we are trying to capture the idea that the economy moves though
periods of high and low growth. These periods might cover many years, so
learning about the switching process—and its variance—is likely to be slow.
Second, we have made the artificial assumption that the mean is repeatedly
drawn from the same distribution. The economy undoubtedly moves through
periods of relative stability and periods of rapid change, and the variance of
shocks to expected dividends is likely to change over time. If investors can-
not observe changes in volatility, their current estimate of volatility will not
be perfect. Finally, alternative assumptions about the evolution of the true
mean do not necessarily have the property that the prior variance ever con-
verges to the true variance.” We abstract from these issues, and take the

more expeditious approach of simply permitting the prior variance to be
different from o2.

The pricing function is similar to the price in the basic model. Assume
that investors are risk neutral and, for notational convenience, let 02 = o2/s
and o7 = o?/h. Realized dividends during the current interval provide no
information about payoffs after the end of the interval; beliefs about those
payoffs always have mean 6*. Therefore, the price at the beginning of every
regime equals §%/r, the value of expected dividends in perpetuity. After ¢
periods in the current regime, the investor’s predictive belief about short-
run dividends has mean

h t
me= R e (38)

where d, is the average dividend observed from the start of the regime.
Price equals

1 6"

py = AFg_,m, + m P

(39)

7 For example, suppose the dividend mean §, follows a random walk, dividends have condi-
tional variance o2, and the shocks to 8, are uncorrelated with dividends and have variance o 2.

In the long run, investors’ beliefs about 8, will be N[m,,0Z], where o is time invariant and
P} 2
of > ol
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where AFy_, is an annuity factor for K — ¢ periods. The properties of prices
and returns once again depend on the behavior of m,. It is straightforward
to show that excess, or unexpected, returns are given by

AFg_
UR;y1 = [1 + t-i-h—-i-l](dHl —m,). (40)

The term in parentheses is just the unexpected dividend. It has both an
immediate effect on returns (the “1” in brackets) and an indirect effect on
prices (with the multiplier AFx_,_,/(t + h + 1)).

The analysis of predictability is more complicated than in our basic model.
In particular, now that the short-run mean is random, we must distinguish
between expectations that are conditional on the current mean and expec-
tations that treat the parameter as random. A combination of the two seems
to be relevant for empirical tests (see below). After ¢ periods into the current
regime, the unexpected return has true mean

AFg
E,JUR,,]=|1+ P (6, —m,), (41)

where 9§, is the current draw of the short-run mean. As in our basic model,
the true unexpected return is negatively related to past dividends and prices.

Consequently, taking the value of 8, as given, the covariance between excess
returns and lagged prices equals

AFg_,

cov[p, UR,.1] = —AFK_t<1 e

) var(m,), (42)

which is negative. We refer to this expression as the conditional covariance
because it regards the short-run mean as fixed (although it does not depend
on the value of §,). The equation is very similar to our previous result with
informative priors, except that the covariance is attenuated because price
fluctuations are less pronounced (the price always returns to §*/r at the end
of the regime). Therefore, in one sense, the effects of parameter uncertainty
remain the same even in the long run: The true and subjective distributions
are different, leading to price reversals.

Unfortunately, things are not quite so simple. The unconditional covari-
ance between prices and unexpected returns—which regards the short-run

mean as random—does not have to be negative. The unconditional covari-
ance equals

UR,,.] = AF (1+AFK‘H> d [1 ”3]2 43
covlpe, URe1] = AP, t+h+1)t+h)s t+hl|7 (43)
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The sign of the covariance depends on the relative magnitudes of s and 4.
Recall that o?/s is the true variance of 6, while o?/h is the prior variance.
The unconditional covariance is negative when the prior variance is greater
than the true (h < s), but positive when the prior variance is less (A > s).
When investors believe that the shocks to expected dividends are volatile,
they are relatively sensitive to realized dividends, and price reversals show
up both conditionally and unconditionally. On the other hand, if the short-
run mean is more variable than investors believe, they tend to be surprised
by the large movements in expected dividends and require many observa-
tions to update their beliefs; returns exhibit continuations, or momentum.
The cutoff value occurs when investors have exactly the right beliefs about
the variance of §,, or when s = h. In this case, the unconditional covariance
between excess returns and lagged prices is exactly zero.

Thus, we have two results on predictability in the renewal model: (1) the
conditional covariance is always negative, regardless of the relative magni-
tudes of s and h, and (2) the unconditional covariance depends on whether A
is less than or greater than s. The fact that the conditional covariance
is negative implies immediately that excess returns are predictable, but it is
not obvious to us whether the conditional or unconditional covariance is
more relevant for standard empirical tests.® An empirical test depends on
the observed sample, and implicitly conditions on the sample value (or val-
ues) of the mean parameter 5,. This observation suggests that the condi-
tional covariance might be most relevant. Indeed, take a particularly simple
case in which the observed sample covers only one regime. Regardless of the
value of §,, the covariance between unexpected returns and prices is ex-
pected to be negative; the correlation in this case corresponds directly to
the conditional covariance. If, however, a sample covers multiple regimes,
the empiricist implicitly conditions on several values of §,. Our formula
for the conditional covariance no longer represents the population counter-
part of the estimate. To muddy the waters further, if the empiricist suspects
that a change in regime occurs and adds a dummy variable to the regres-
sion, or focuses on subperiod estimates, then the sample covariance will
correspond once again to the conditional covariance. In short, we find it
difficult to know a priori whether the conditional or unconditional covari-
ance exerts a stronger influence on empirical tests. We turn to simulations
to better understand these issues.?

8 Additional explanation might be useful. A predictive regression for returns that includes
regime dummies would estimate the conditional covariance, and can therefore detect the price
reversals. However, it is not common to include regime dummies in predictive regressions, nor
is it easy to identify regime changes.

® As an aside, parameter uncertainty affects more than just predictability. Volatility in the
model jumps at the beginning of each regime and then slowly decays as investors learn about
the short-run mean. We find this feature of the model quite appealing. It generates persistent
volatility in combination with high volatility following economic shocks (even though dividend
volatility has not changed). Both properties seem to capture important patterns in the data
(e.g., Schwert (1989)). These observations deserve a fuller treatment, but we focus on predict-
ability because of space limitations. See also Veronesi (1999).
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VI. Simulations

The simulations explore predictability in the renewal model. To make the
model more realistic, we assume that dividends follow a geometric random
walk with time-varying growth:

Ind, 1 =g, +Ind; + €14, (44)

where ¢,,.; ~ N[0, 0?] and g, is randomly drawn every K periods from a
normal distribution with mean g* and variance o %/s. Investors, who are risk
neutral, must estimate g, from observed dividends (Appendix B describes
the Bayesian inference problem). The simulations normalize the initial div-
idend to equal one, the discount rate equals 0.12, o = 0.10, and the long-run
growth rate g* equals 0.03. These parameters are chosen to be reasonably
close to actual values, interpreting a period as one year. In comparison, from
1926 to 1997, dividends grew at an annual rate of 4.4 percent with a stan-
dard deviation of 12.0 percent. The CRSP value-weighted index had an an-
nual return of 12.5 percent.

The simulations estimate predictive regressions of returns on lagged div-
idend yield (DY). In the model, DY and lagged growth rates both capture
information about investors’ beliefs (in the same way that dividends and
prices do in the basic model). When past dividend growth has been high
relative to g, subsequent growth is likely to be disappointing and true ex-
pected returns are, accordingly, low. We use DY as the predictive variable
because it is more common and it provides the most timely information about
expected growth. In fact, with a constant discount rate, changes in expected
growth are the only source of variation in DY. Reversals show up as a pos-
itive slope in the regressions since DY moves inversely with growth rates.
We report regressions using roughly 75 years of data, similar to a typical
study, and for several combinations of the parameters s, &, and K. These
parameters determine the true variance in short-run growth rates, the vari-
ance of investors’ priors, and the length of a regime, respectively.

Table I reports the average slope coefficient and average ¢-statistic from
2,500 simulations. An important complication arises because the slope coef-
ficient is biased upward in small samples (see Stambaugh (1999)). The bias
is caused by contemporaneous correlation between returns and DY. To cor-
rect for this bias, we estimate auxiliary regressions of #rue unexpected re-
turns on lagged DY. These regressions use exactly the same dividend and
price series, but we subtract out from each return its true conditional ex-
pectation. The difference between the slopes in the raw and auxiliary re-
gressions shows how time variation in expected returns (created by parameter
uncertainty) affects the predictive slope. This is exactly what we are trying
to measure. The difference is reported as a bias-adjusted slope in Table I. We
have also corrected for bias using Stambaugh’s (1999) approximation, with
similar results.

Table I shows that learning can have a large effect on empirical tests.
Even when investors know both the mean and variance of the growth
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Table I
Predictability in Steady State

We simulate the renewal model 2,500 times and estimate predictive regressions of excess re-
turns on lagged dividend yield. Dividends are assumed to follow a geometric random walk with
time-varying expected growth, where the short-run growth rate g, is randomly drawn every K
periods from N[g* o2/s]. Investors are risk neutral and have beliefs about g, at the beginning
of each regime equal to N{g* o%/h]. In the simulations, r = 0.12, o = 0.10, and g* = 0.03. The
table reports, for various combinations of s, h, and K, the average slope coefficient, bias-

adjusted slope coefficient, and ¢-statistic from the regressions. The bias correction is described
in the text.

Estimation Risk Perfect Information
h h

s 16 25 49 16 25 49

2 regimes (K = 38)
Slope 16 2.91 3.05 3.68 0.40 0.39 0.50
25 3.31 3.57 441 0.37 0.31 0.52
49 3.92 4.16 5.62 0.44 0.50 0.41
Bias-adj slope 16 0.74 0.36 -0.37 0.00 0.00 0.00
25 0.95 0.70 0.09 0.00 0.00 0.00
49 1.28 1.04 0.68 0.00 0.00 0.00
T-statistic 16 1.02 0.80 0.53 0.25 0.25 0.28
25 1.15 0.98 0.71 0.23 0.19 0.18
49 1.34 1.14 0.94 0.11 0.14 0.13

4 regimes (K = 19)
Slope 16 2.56 2.44 1.97 0.37 0.30 0.34
25 3.34 3.29 3.61 0.32 0.32 0.28
49 4.01 4.21 5.25 0.35 0.35 0.27
Bias-adj slope 16 0.42 -0.31 -2.04 0.00 0.00 0.00
25 1.01 0.50 -0.90 0.00 0.00 0.00
49 1.64 1.30 0.44 0.00 0.00 0.00
T-statistic 16 0.62 0.38 0.05 0.24 0.20 0.22
25 0.86 0.59 0.32 0.18 0.18 0.16
49 1.05 0.80 0.56 0.14 0.14 0.11

6 regimes (K = 13)
Slope 16 2.59 1.94 1.41 0.27 0.32 0.24
25 3.65 3.44 3.65 0.31 0.28 0.25
49 4.38 4.87 5.80 0.29 0.30 0.26
Bias-adj slope 16 0.42 -0.77 -3.65 0.00 0.00 0.00
25 1.28 0.39 -1.60 0.00 0.00 0.00
49 2.02 1.56 0.36 0.00 0.00 0.00
T-statistic 16 0.48 0.19 -0.05 0.17 0.20 0.16
25 0.42 0.45 0.22 0.16 0.15 0.13
49 0.90 0.71 0.44 0.11 0.10 0.10

rate (h = s), the coefficient on DY is positive. With two regimes, the slope
coefficient ranges from 0.68 when 4 = s = 49 (g, has a standard deviation
of 1.4 percent) to 0.74 when h = s = 16 (g, has a standard deviation of
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2.5 percent). With four regimes, the slope coefficient ranges from 0.42 to
0.50, and with six regimes, the slope ranges from 0.36 to 0.42. Reversals
become much more pronounced when investors’ prior variance is higher than
actual variance. For example, if the prior variance is 2.5 percent (A = 16) but
the true variation in g, is only 1.4 percent (s = 49), the predictive slope.
varies from 1.28 with two regimes to 2.02 with six regimes. Cases in which
s > h, so the subjective variance is greater than the true, are of particular
interest because they show roughly how prices behave before we reach steady
state (even if investors know o2, the subjective variance of dividends is al-
ways greater than the true after a finite number of periods). We suspect
that the evolutionary process is as relevant for empirical tests as the long-
run equilibrium.

The table also shows that continuations—a negative slope coefficient in
the DY regressions—are possible if 2 > s. These cases represent an economy
that is changing more rapidly than investors realize. In fact, the average
slope coefficient can be quite negative, up to —3.65 when there are six re-
gimes, if investors substantially understate the true volatility of g,. Inves-
tors require many observations until their beliefs catch up with the actual
changes, which creates persistence in expected returns. As mentioned ear-
lier, Lewis (1989) argues that this sort of phenomenon characterized the
foreign exchange market in the 1980s.

To add some perspective, the historical slope coefficient for the period 1941
to 1997 is 3.93 (¢-statistic of 2.27), before adjusting for bias, when the CRSP
value-weighted return is regressed on lagged DY. The simulations suggest
that parameter uncertainty could account for a nontrivial portion of the
predictability. We hesitate to draw firm conclusions because the simulations
do not (and probably cannot) capture all of the relevant properties of actual
dividends and returns. It is beyond the scope of the current paper to under-
stand which parameters best characterize the stock market.

Finally, we note that adding a regime dummy variable to the regressions
produces an estimate of the conditional covariance. In results not reported,
the average bias-adjusted slope coefficient is approximately 1.47 with two
regimes, 2.00 with four regimes, and 2.55 with six regimes. These values are
not sensitive to the values of & and s, presumably because - and s affect the
covariance in the numerator and the variance in the denominator by similar
magnitudes. Although we believe these issues deserve a more complete treat-
ment, we simply note here that the simulations confirm, in substance, our
earlier results. Even in the long run, parameter uncertainty can be a source
of predictability in empirical tests. Investors can neither perceive, nor take
advantage of, this predictability.

VII. Summary and Conclusions

Financial economists generally assume that, unlike themselves, investors
know the means, variances, and covariances of the cash-flow process. Prac-
titioners do not have this luxury. To apply the elegant framework of modern
portfolio theory, they must estimate the process using whatever information



Learning, Asset-Pricing Tests, and Market Efficiency 1141

is available. However, as Black (1986) so memorably observes, the world is a
noisy place; our observations are necessarily imprecise. The literature on
estimation risk formalizes this problem, but it seems to have had little im-
pact on mainstream thinking about asset pricing and market efficiency. We
believe that this is due, in part, to its focus on the subjective beliefs of
investors rather than the empirical properties of returns.

We show that learning can significantly affect asset-pricing tests. Prices
in our model satisfy commonly accepted notions of market efficiency and
rational expectations: Investors use all available information when making
decisions and, in equilibrium, the perceived pricing function equals the true
pricing function. In spite of this, the empirical properties of returns differ
significantly from the properties perceived by investors. Excess returns can
appear to be predictable even though investors perceive a constant risk pre-
mium; prices can appear to be too volatile even though all investors are
rational; and the CAPM can fail to describe returns even though investors
attempt to hold mean-variance efficient portfolios. Put simply, empirical tests
can find patterns in returns that rational investors can neither perceive nor
exploit.

It is important to note that predictability is not due to some spurious
estimation problem. Rather, it is a feature of the true data-generating pro-
cess. This means that parameter uncertainty can affect empirical tests in
surprising ways. We find, for example, that an implementable market-
timing strategy might generate abnormal profits. An econometrician repli-
cating the strategy in real time (using past data) is expected to find, in a
frequentist sense, risk-adjusted profits. Again, however, a rational investor
does not gain anything from following the strategy. The investors’ perceived
profit is zero. (A similar phenomenon explains why investors cannot use
cross-sectional predictability to beat the market.) This puzzle highlights the
distinction between the repeated-sampling perspective of empirical tests and
the conditional perspective of investment decisions (conditional on a given
realization of dividends). It also shows how difficult it might be to construct
valid asset-pricing tests in the presence of parameter uncertainty.

The fact that parameter uncertainty might explain observed asset-
pricing anomalies does not, of course, mean that it does. Our simulations
suggest that learning might be important, but empirical tests are neces-
sary to draw strong conclusions (see, also, Brav and Heaton (2001)). To
assess market efficiency, the researcher may, in effect, need to mimic the
Bayesian-updating process of rational investors to determine whether the
patterns observed in the data could have been exploited. This is not an
easy task: It would necessarily require some judgment about the learning
process and what constitutes a “reasonable” prior. This observation is rem-
iniscent of Fama’s (1970) critique of asset-pricing tests. He emphasizes
that empirical tests always entail a joint hypothesis of market efficiency
and a model of perceived expected returns. Our study suggests that empir-
ical tests may also require an assumption about prior beliefs. The role of

prior beliefs and learning is typically ignored, but it might be critical for
understanding anomalies.
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It is tempting to compare parameter uncertainty to data mining. In recent
years, researchers have become increasingly sensitive to the possibility that,
with the intensive scrutiny of data, statistically “significant” return pat-
terns can emerge even when returns are random (e.g., Lo and MacKinlay
(1990)). Thus, we might observe patterns that do not exist in the true un-.
derlying process. Our analysis of parameter uncertainty suggests a comple-
mentary concern. With hindsight, we can discern patterns that existed in
the true return process but could not have been exploited by rational inves-
tors. Similar to data snooping, these patterns would not be relevant for in-
vestment decisions. Unlike data snooping, the patterns can persist in the
future because they are part of the true data-generating process. This con-
clusion provides an alternative perspective on empirical anomalies. For ex-
ample, Fama (1998) argues that various long-horizon return anomalies in
the literature are chance results, consistent with market efficiency. Our work
reinforces his point. Reversals and continuations might be expected in an
efficient market with parameter uncertainty, not only as a random outcome
of the data, but as a feature of the actual process.

Appendix A: Equilibrium in the Basic Model

Beliefs about the dividend process are given by equation (7) in the text.
Rational expectations requires that investors anticipate how prices are de-
termined in the future. This is imposed by recursively substituting for p,,,
in (4), yielding

1. & 1
pe=—d - 2)/[21 AT Ejvary,, (P + dt+k):| .. (A1)

Equation (Al) assumes that lim, . E,[p,.,]/(1 + 7)* = 0, which is satisfied
in equilibrium. Price is a function of expected dividends and the expected
conditional variance of gross returns. The conditional variance is likely to
change over time since parameter uncertainty vanishes in the limit. How-
ever, if price is a linear function of d,, the conditional variance should be
deterministic. Price volatility is driven entirely by the first term and the
subjective variance is

ORI (PRI 1\ M
vari(p;.1 + dipq) = +r(t+1) < ; . (A2)

Substituting into (Al) yields the equilibrium pricing function:

1.
po= " di— 29 (O)%, (43)
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where

[ee]

-3 1 [1+ 1 ]2< t+k> Al
fuy_hul+ﬂk r(t+k) t+k—1) (Aa4)

The function f(¢) decreases as ¢ gets larger and converges to 1/r in the limit.
Price is a linear function of d,, so the investor’s wealth is MVN (which we
assumed to derive the optimal portfolio choice) and conditional volatility is
deterministic (which we assumed above).

Appendix B: Bayesian Inference Problem for the Simulations

The simulations assume that dividends follow a geometric random walk
with time-varying growth:

Ind;;, = g, +Ind; + €., (B1)

where ¢€,,; ~ N[0, 02]. The growth rate g, is randomly drawn every K pe-
riods from a normal distribution with mean g* and variance o?/s. At the
beginning of a regime, investors’ prior beliefs about g, are N[g*, a%/h]. After
t periods in a regime (¢t = K), investors beliefs about g, are N[c,,02,], where

= h * 4 t IEt Alnd (B2)
“T iy n® Tiip ot
1
2, = ! B
O-C,t t+h0- ( 3)

The predictive belief about log dividends next period is normally distributed
with mean ¢, + Ind, and variance [(¢t + & + 1)/(t + h)]o?. Actual dividends
are log-normally distributed. Converting the expectations about log divi-
dends into actual dividends, and extending the results to any dividend in the
next q periods, where ¢t + ¢ = K (that is, dividends in the current regime),
the predictive distribution of dividends is log-normal with mean

s 1 2 1 2 2
Efldi 4] = d,explc, + qu' + 5(1 Oc,t |- (B4)

This equation recognizes that changes in log dividends are correlated with
changes in beliefs about the growth rate. In other words, investors recognize
that their beliefs, both the mean and the variance, will evolve over time.
After the end of the current regime, investors expect dividends to grow once
again at the rate g*, and the variance of the growth rate is o %/h. Therefore,
to derive beliefs about long-run dividends requires two steps: (1) Take the
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expectation conditional on the realized dividend at the end of the current
regime, d;, and (2) take the expectation conditional only on the current div-
idend, d,. Details available on request.

REFERENCES

Barberis, Nicholas, 2000, Investing for the long run when returns are predictable, Journal of
Finance 55, 225—-264.

Bawa, Vijay, and Stephen Brown, 1979, Capital market equilibrium: Does estimation risk really
matter?, in Vijay Bawa, Stephen Brown, and Roger Klein, eds.: Estimation Risk and Op-
timal Portfolio Choice (North-Holland, Amsterdam).

Bawa, Vijay, Stephen Brown, and Roger Klein, 1979, Estimation Risk and Optimal Portfolio
Choice (North-Holland, Amsterdam).

Berger, James, 1985, Statistical Decision Theory and Bayesian Analysis (Springer-Verlag, New
York).

Black, Fischer, 1986, Noise, Journal of Finance 41, 529-543.

Bossaerts, Peter, and Pierre Hillion, 1999, Implementing statistical criteria to select return
forecasting models: What do we learn? Review of Financial Studies 12, 405-428.

Brav, Alon, and John B. Heaton, 2001, Competing theories of financial anomalies, Working
paper, Duke University.

Brennan, Michael, and Yihong Xia, 1998, Stock price volatility, learning, and the equity pre-
mium, Working paper, University of California at Los Angeles.

Campbell, John, 1991, A variance decomposition for stock returns, The Economic Journal 101,
157-179.

Clarkson, Peter, Jose Guedes, and Rex Thompson, 1996, On the diversification, observability,
and measurement of estimation risk, Journal of Financial and Quantitative Analysis 31,
69-84.

Coles, Jeffrey, and Uri Loewenstein, 1988, Equilibrium pricing and portfolio composition in the
presence of uncertain parameters, Journal of Financial Economics 22, 279-303.

Coles, Jeffrey, Uri Loewenstein, and Jose Suay, 1995, On equilibrium pricing under parameter
uncertainty, Journal of Financial and Quantitative Analysis 30, 347-364.

DeLong, J. Bradford, Andrei Shleifer, Lawrence Summers, and Robert Waldmann, 1990, Noise
trader risk in financial markets, Journal of Political Economy 98, 703—-738.

Detemple, Jerome, 1986, Asset pricing in a production economy with incomplete information,
Journal of Finance 41, 383-391.

Dothan, Michael, and David Feldman, 1986, Equilibrium interest rates and multiperiod bonds
in a partially observable economy, Journal of Finance 41, 369-382.

Fama, Eugene, 1970, Efficient capital markets: A review of theory and empirical work, Journal
of Finance 25, 383—417.

Fama, Eugene, 1976, Foundations of Finance (Basic Books, New York).

Fama, Eugene, 1998, Market efficiency, long-term returns, and behavioral finance, Journal of
Financial Economics 49, 283-306.

Fama, Eugene, and Kenneth French, 1989, Business conditions and expected returns on stocks
and bonds, Journal of Financial Economics 25, 23—49.

Fama, Eugene, and Kenneth French, 1992, The cross-section of expected stock returns, Journal
of Finance 47, 427-465.

Fama, Eugene, and Kenneth French, 1996, Multifactor explanations of asset pricing anomalies,
Journal of Finance 51, 55-84.

Fama, Eugene, and James MacBeth, 1973, Risk, return, and equilibrium: Empirical tests, Jour-
nal of Political Economy 81, 607-636.

Gennotte, Gerard, 1986, Optimal portfolio choice under incomplete information, Journal of Fi-
nance 41, 733-746.

Gibbons, Michael, Stephen Ross, and Jay Shanken, 1989, A test of the efficiency of a given
portfolio, Econometrica 57, 1121-1152.

Goyal, Amit, and Ivo Welch, 1999, Predicting the equity premium, Working paper, Yale School
of Management.



Learning, Asset-Pricing Tests, and Market Efficiency 1145

Greene, William, 2000, Econometric Analysis, 4th edition (Prentice Hall, Upper Saddle River,
NJ).

Harvey, Campbell, 1989, Time-varying conditional covariances in tests of asset pricing models,
Journal of Financial Economics 24, 289-317.

Jegadeesh, Narasimhan, and Sheridan Titman, 1993, Returns to buying winners and selling
losers: Implications for stock market efficiency, Journal of Finance 48, 65-91.

Kandel, Shmuel, and Robert Stambaugh, 1996, On the predictability of stock returns: An asset
allocation perspective, Journal of Finance 51, 385—424.

Lakonishok, Josef, Andrei Shleifer, and Robert Vishny, 1994, Contrarian investment, extrapo-
lation, and risk, Journal of Finance 49, 1541-1578.

LeRoy, Stephen, and Richard Porter, 1981, The present value relation: Tests based on implied
variance bounds, Econometrica 49, 555-574.

Lewellen, Jonathan, 2001, Predicting returns with financial ratios, Working paper, MIT Sloan
School of Management.

Lewellen, Jonathan, and Jay Shanken, 2000, Market efficiency, estimation risk, and the pre-
dictability of returns, Working paper, MIT and the University of Rochester.

Lewis, Karen, 1989, Changing beliefs and systematic rational forecast errors with evidence
from foreign exchange, American Economic Review 79, 621-636.

Lo, Andrew, and A. Craig MacKinlay, 1990, Data-snooping biases in tests of financial asset
pricing models, Review of Financial Studies 3, 431-467.

Lucas, Robert, 1978, Asset prices in an exchange economy, Econometrica 46, 1429-1446.

Merton, Robert, 1971, Optimum consumption and portfolio rules in a continuous-time model,
Journal of Economic Theory 3, 373—413.

Pastor, Lubos, 2000, Portfolio selection and asset pricing models, Journal of Finance 55, 179-223.

Schwert, G. William, 1989, Why does stock market volatility change over time? Journal of
Finance 44, 1115-1153.

Shanken, Jay, 1990, Intertemporal asset pricing: An empirical investigation, Journal of Econo-
metrics 45, 99-120.

Shiller, Robert, 1981, Do stock prices move too much to be justified by subsequent changes in
dividends? American Economic Review 7, 421-436.

Stambaugh, Robert, 1999, Predictive regressions, Journal of Financial Economics 54, 375-421.

Stulz, René, 1987, An equilibrium model of exchange rate determination and asset pricing with
nontraded goods and imperfect information, Journal of Political Economy 95, 1024-1040.

Timmermann, Allan, 1993, How learning in financial markets generates excess volatility and
predictability in stock prices, Quarterly Journal of Economics 108, 1135-1145.

Timmermann, Allan, 1996, Excess volatility and predictability of stock prices in autoregressive
dividend models with learning, Review of Economic Studies 63, 523—-557.

Veronesi, Pietro, 1999, Stock market overreaction to bad news in good times: A rational expec-
tations equilibrium model, Review of Financial Studies 12, 975-1007.

Wang, Jiang, 1993, A model of intertemporal asset prices under asymmetric information, Re-
view of Economic Studies, 60, 249—282.

Williams, Joseph, 1977, Capital asset prices with heterogeneous beliefs, Journal of Financial
Economics 5, 219-239.

Xia, Yihong, 2001, Learning about predictability: The effects of parameter uncertainty on dy-
namic asset allocation, Journal of Finance 56, 205-246.



