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Statistics in the Social Sciences

rapid and broader adoption of Bayesian methodology. The
importance of Bayesian thought and methodology is mani-
fest in the vignettes of Beck, Eisenberg, Lo, Raftery, Rossi
and Allenby, Sobel, and Tsay.

One of the real pleasures of pulling this collection of vi-
gnettes together was to see a large number of themes recur
through many of the vignettes. In addition to those just men-
tioned, latent variables, ecological regression, nonlinear-
ity, long-range dependence, graphical models, and networks
(social and neural) are among the topics that reemerge. La-
tent variables arise in a variety of contexts, including mix-
ture models and latent trait models, and they figure into
most of the vignettes. Beck highlights the role of politi-
cal scientists in developing approaches to addressing the
ecological inference problem, and Eisenberg notes the im-
portance of this methodology in voting rights cases as well
as the controversy that surrounds its use. Nonlinearity is
a recurrent theme in various modeling contexts throughout
the collection. For example, it arises in Browne’s vignette
in the context of generalizations of structural equation mod-
els and in Tsay’s vignette in the context of nonlinear pro-
cesses. Both authors point to these as important areas for
future work. Tsay discusses long-range dependence in the
context of data from communications networks and from fi-
nancial markets, and Lo goes into some depth on this issue
in his discussion of the stochastic nature of financial asset
prices. Fienberg discusses graphical models in the context
of log-linear model theory, and Sobel discusses them in the
context of their usage for drawing causal inferences. Both
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Fienberg and Raftery note the importance of recent work
on social networks, as well as the importance of work that
remains to be done. The vignettes of Lo and of Rossi and
Allenby make references to ways that neural networks are
being used in business applications.

In summary, this collection points to the excitement of
past and future developments arising from the interdigita-
tion of statistics with business and social science. Though
the types of questions arising in the various fields and the
motivation behind them vary to some extent, it is clear that
statistical thought and methodology is central to advance-
ment of our understanding of human behavior and inter-
actions. The opportunities presented by new and evolving
technologies for collecting more and better data are abun-
dant, and these will no doubt continue to motivate new sta-
tistical research and applications for many years to come. It
is hoped that these vignettes will stimulate statistical scien-
tists to become more deeply engaged in the challenges and
problems of business and social science. The authors have
pointed the way to a wide array of interesting challenges
arising at the interstices of statistics with the economic,
behavioral, and social sciences, and there are suggestions
that we stand to profit by also bringing the biological and
physical sciences to bear on some of these challenges. An
attraction of the field of statistics has always been its broad
applicability to interesting and important problems, and this
collection demonstrates the numerous and intellectually
challenging opportunities for making valuable contributions
in various areas.

Finance: A Selective Survey

Andrew W. LO

1. INTRODUCTION

Ever since the publication in 1565 of Girolamo Cardano’s
treatise on gambling, Liber de Ludo Aleae (The Book of
Games of Chance), statistics and financial markets have
been inextricably linked. Over the past few decades, many
of these links have become part of the canon of modern
finance, and it is now impossible to fully appreciate the
workings of financial markets without them. In this brief
survey, I hope to illustrate the enormous research opportu-
nities at the intersection of finance and statistics by review-
ing three of the most important ideas of modern finance:
efficient markets, the random walk hypothesis, and deriva-
tive pricing models. Although it is impossible to provide a
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thorough exposition of any of these ideas in this brief essay,
my less ambitious goal is to communicate the excitement
of financial research to statisticians and to stimulate further
collaboration between these two highly complementary dis-
ciplines. It is also impossible to provide an exhaustive bib-
liography for each of these topics—that would exceed the
page limit of this entire article—and hence my citations
are selective, focusing on more recent and most relevant
developments for the readers of this journal. (For a highly
readable and entertaining account of the recent history of
modern finance, see Bernstein 1992.)

To develop some context for the three topics that I have
chosen, consider one of the most fundamental ideas of eco-
nomics, the principle of supply and demand. This principle
states that the price of any commodity and the quantity
traded are determined by the intersection of supply and de-
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mand curves, where the demand curve represents the sched-
ule of quantities desired by consumers at various prices and
the supply curve represents the schedule of quantities that
producers are willing to supply at various prices. The in-
tersection of these two curves determines an “equilibrium,”
a price-quantity pair that satisfies both consumers and pro-
ducers simultaneously. Any other price—quantity pair may
serve one group’s interests, but not the other’s.

Even in this simple description of a market, all the el-
ements of modern finance are present. The demand curve
is the aggregation of many individual consumers’ desires,
each derived from optimizing an individual’s preferences
subject to a budget constraint that depends on prices and
other factors (e.g., income, savings requirements, borrow-
ing costs). Similarly, the supply curve is the aggregation of
many individual producers’ outputs, each derived from op-
timizing an entrepreneur’s preferences subject to a resource
constraint that also depends on prices and other factors (e.g.,
costs of materials, wages, trade credit). Probabilities affect
both consumers and producers as they formulate their con-
sumption and production plans through time and in the face
of uncertainty—uncertain income, uncertain costs, and un-
certain business conditions.

It is the interaction between prices, preferences, and
probabilities—sometimes called the “three p’s of total risk
management” (see Lo 1999)—that gives finance its rich-
ness and depth. Formal models of financial asset prices
such as those of Breeden (1979), Lucas (1978), and Merton
(1973a) show precisely how the three p’s simultaneously
determine a “general equilibrium” in which demand equals
supply across all markets in an uncertain world where in-
dividuals and corporations act rationally to optimize their
own welfare. Typically, these models imply that a security’s
price is equal to the present value of all future cashflows to
which the security’s owner is entitled. Several aspects make
this calculation unusually challenging: individual prefer-
ences must be modeled quantitatively, future cashflows are
uncertain, and so are discount rates. Pricing equations that
account for such aspects are often of the form

(oo}
P =FE; [Z'Yt,t+th+k:| s (1)

k=1

and their intuition is straightforward; today’s price must
equal the expected sum of all future payments D, multi-
plied by discount factors ; ;1 that act as “exchange rates”
between dollars today and dollars at future dates. If prices
do not satisfy this condition, this implies a misallocation of
resources between today and some future date, not unlike a
situation in which two commodities sell for different prices
in two countries even after exchange rates and shipping
costs have been taken into account (a happy situation for
some enterprising arbitrageurs, but not likely to last very
long).

What determines the discount factors 7;,.4+x? They are
determined through the equalization of supply and demand,
which in turn is driven by the preferences, resources, and
expectations of all market participants; that is, they are de-
termined in general equilibrium. It is this notion of equilib-
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rium, and all of the corresponding ingredients on which it
is based, that lies at the heart of financial modeling.

2. EFFICIENT MARKETS

There is an old joke, widely told among economists,
about an economist strolling down the street with a compan-
ion when they come upon a $100 bill lying on the ground.
As the companion reaches down to pick it up, the economist
says “Don’t bother—if it were a real $100 bill, someone else
would have already picked it up.”

This humorous example of economic logic gone awry
strikes dangerously close to home for proponents of the effi-
cient markets hypotheses, one of the most controversial and
well-studied propositions in all the social sciences. It is dis-
armingly simple to state, has far-reaching consequences for
academic pursuits and business practice, and yet is surpris-
ingly resilient to empirical proof or refutation. Even after
three decades of research and literally hundreds of journal
articles, economists have not yet reached a consensus about
whether markets—particularly financial markets—are effi-
cient or not.

As with so many of the ideas of modern economics, the
origins of the efficient markets hypothesis can be traced
back to Paul Samuelson (1965), whose contribution is neatly
summarized by the title of his article, “Proof that Properly
Anticipated Prices Fluctuate Randomly.” In an information-
ally efficient market, price changes must be unforecastable
if they are properly anticipated; that is, if they fully in-
corporate the expectations and information of all market
participants. In the context of the basic pricing equation
(1), the conditional expectation operator E;[-] = E[-|Q]
is defined with respect to a certain set of information 2;;
hence elements of this set cannot be used to forecast fu-
ture price changes, because they have already been im-
pounded into current prices. Fama (1970) operationalized
this hypothesis—summarized in his well-known expression
“Prices fully reflect all available information”—by spec-
ifying the elements of the information set 2, available to
market participants; for example, past prices, or all publicly
available information, or all public and private information.

This concept of informational efficiency has a wonder-
fully counterintuitive and “Zen-like” quality to it: The more
efficient the market, the more random the sequence of price
changes generated by such a market, and the most efficient
market of all is one in which price changes are completely
random and unpredictable. In contrast to the passive motiva-
tion that inspires randomness in physical and biological sys-
tems, randomness in financial systems is not an implication
of the principle of insufficient reason, but instead is the out-
come of many active participants attempting to profit from
their information. Motivated by unbridled greed, specula-
tors aggressively pounce on even the smallest informational
advantages at their disposal, and in doing so they incorpo-
rate their information into market prices and quickly elimi-
nate the profit opportunities that gave rise to their specula-
tion. If this occurs instantaneously, which it must in an ide-
alized world of “frictionless” markets and costless trading,
then prices must always fully reflect all available informa-
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tion, and no profits can be garnered from information-based
trading (because such profits have already been captured).

Such compelling motivation for randomness is unique
among the social sciences and is reminiscent of the role that
uncertainty plays in quantum mechanics. Just as Heisen-
berg’s uncertainty principle places a limit on what we can
know about an electron’s position and momentum if quan-
tum mechanics holds, this version of the efficient markets
hypothesis places a limit on what we can know about future
price changes if the forces of financial self-interest are at
work.

However, one of the central tenets of modern finance is
the necessity of some trade-off between risk and expected
returns, and whether or not predictability in security prices
is inefficient can be answered only by weighing it against
the risks inherent in exploiting such predictabilities. In par-
ticular, if a security’s price changes are predictable to some
degree, then this may be just the reward needed to attract
investors to hold the asset and bear the associated risks (see,
e.g., Lucas 1978). Indeed, if an investor is sufficiently risk
averse, then he might gladly pay to avoid holding a security
that has unforecastable returns.

Despite the eminent plausibility of such a trade-off—
after all, investors must be rewarded to induce them to
bear more risk—operationalizing it has proven a formidable
challenge to both finance academics and investment profes-
sionals. Defining the appropriate measures of risk and re-
ward, determining how they might be linked through fun-
damental principles of economics and psychology, and then
estimating such links empirically using historical data and
performing proper statistical inference are issues that have
occupied much of the finance literature for the past half-
century, beginning with Markowitz’s (1952) development
of portfolio theory and including Sharpe’s (1964) capital
asset pricing model (CAPM), Merton’s (1973a) intertem-
poral CAPM, Ross’s (1976) arbitrage pricing theory, and
the many empirical tests of these models. Moreover, recent
advances in methods of statistical inference, coupled with
corresponding advances in computational power and avail-
ability of large amounts of data, have created an exciting
renaissance in the empirical analysis of efficient markets,
both inside and outside the halls of academia; in earlier
work (Lo 1997) I provided an overview and a more com-
plete bibliography of this literature.

3. THE RANDOM WALK

Quite apart from whether or not financial markets are
efficient, one of the most enduring questions of modern
finance is whether financial asset price changes are fore-
castable. Perhaps because of the obvious analogy between
financial investments and games of chance, mathematical
models of financial markets have an unusually rich history
that predates virtually every other aspect of economic anal-
ysis. The vast number of prominent mathematicians, statis-
ticians, and other scientists who have applied their consider-
able skills to forecasting financial security prices is a testa-
ment to the fascination and the challenges that this problem
poses.
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Much of the early finance literature revolved around the
random walk hypothesis and the martingale model, two sta-
tistical descriptions of unforecastable price changes that
were (incorrectly) taken to be implications of efficient mar-
kets. One of the first tests of the random walk was devised
by Cowles and Jones (1937), who compared the frequency
of sequences and reversals in historical stock returns, where
the former are pairs of consecutive returns with the same
sign and the latter are pairs of consecutive returns with
opposite sign. Many others performed similar tests of the
random walk (see Lo 1997 and Lo and MacKinlay 1999
for a survey of this literature), and with the exception of
Cowles and Jones (who subsequently acknowledged an er-
ror in their analysis), all reported general support for the
random walk using historical stock price data.

However, some recent research has sharply contradicted
these findings. Using a statistical comparison of variances
across different investment horizons applied to the weekly
returns of a portfolio of stocks from 1962 to 1985, Lo and
MacKinlay (1988) found that the random walk hypothe-
sis can be rejected with great statistical confidence (well in
excess of .999). In fact, the weekly returns of a portfolio
containing an equal dollar amount invested in each security
traded on the New York and American Stock Exchanges
(called an equal-weighted portfolio) exhibit a striking rela-
tion from one week to the next: a first-order autocorrelation
coefficient of .30.

An autocorrelation of .30 implies that approximately 9%
of the variability of next week’s return is explained by this
week’s return. An equally weighted portfolio containing
only the stocks of “smaller” companies, companies with
market capitalization in the lowest quintile, has a autocor-
relation coefficient of .42 during the 1962-1985 sample pe-
riod, implying that about 18% of the variability in next
week’s return can be explained by this week’s return. Al-
though numbers such as 9% and 18% may seem small, it
should be kept in mind that 100% predictability yields as-
tronomically large investment returns; a very tiny fraction
of such returns can still be economically meaningful.

These findings surprise many. economists, because a vi-
olation of the random walk necessarily implies that price
changes are forecastable to some degree. But because fore-
casts of price changes are also subject to random fluctua-
tions, riskless profit opportunities are not an immediate con-
sequence of forecastability. Nevertheless, economists still
cannot completely explain why weekly returns are not a
“fair game.” Two other empirical facts add to this puzzle:

1. Weekly portfolio returns are strongly positively au-
tocorrelated, but the returns to individual securities gener-
ally are not; in fact, the average autocorrelation—averaged
across individual securities—is negative (and statistically
insignificant).

2. The predictability of returns is quite sensitive to the
holding period; serial dependence is strong and positive for
daily and weekly returns but is virtually zero for returns
over a month, a quarter, or a year.

For holding periods much longer than 1 week (e.g., 3—
5 years), Fama and French (1988) and Poterba and Sum-
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mers (1988) found negative serial correlation in U.S. stock
returns indexes using data from 1926 to 1986. Although
their estimates of serial correlation coefficients seem large
in magnitude, there are insufficient data to reject the random
walk hypothesis at the usual levels of significance. More-
~over, a number of statistical biases documented by Kim,

Nelson, and Startz (1991) and Richardson (1993) cast seri-
ous doubt on the reliability of these longer-horizon infer-
ences.

Despite these concerns, models of long-term memory
have been a part of the finance literature ever since Mandel-
brot (1971) applied Hurst’s (1951) rescaled range statistic
to financial data. Time series with long-term memory ex-
hibit an unusually high degree of persistence, so that obser-
vations in the remote past are nontrivially correlated with
observations in the distant future, even as the time span be-
tween the two observations increases. Nature’s predilection
toward long-term memory has been well documented in the
natural sciences such as hydrology, meteorology, and geo-
physics, and some have argued that economic time series
thus must also have this property.

But, using recently developed asymptotic approximations
based on functional central limit theory, I (Lo 1991) con-
structed a test for long-term memory that is robust to short-
term correlations of the sort uncovered by Lo and MacKin-
lay (1988, 1999), and concluded that despite earlier evi-
dence to the contrary, there is little support for long-term
memory in stock market prices. Departures from the ran-
dom walk hypothesis can be fully explained by conventional
models of short-term dependence for most financial time
series. However, new data are being generated each day,
and the characteristics of financial time series are unlikely
to be stationary over time as financial institutions evolve.
Perhaps some of the newly developed techniques for de-
tecting long-term memory—borrowed from the statistical
physics literature—will shed more light on this issue (see,
e.g., Mandelbrot 1997; Pilgram and Kaplan 1998).

More recent investigations have focused on a number of
other aspects of predictability in financial markets: stochas-
tic volatility models (Gallant, Hsieh, and Tauchen 1997), es-
timation of tail probabilities and “rare” events (Jansen and
de Vries 1991), applications of “chaos theory” and non-
linear dynamical systems (Hsieh 1991), Markov-switching
models (Gray 1996), and mixed jump-diffusion models
(Bates 1996). This research area is one of the most active
in the finance literature, with as many researchers in indus-
try as in academia developing tools to detect and exploit all
forms of predictabilities in financial markets.

Finally, in contrast to the random walk literature, which
focuses on the conditional distribution of security returns,
another strand of the early finance literature has focused on
the marginal distribution of returns, and specifically on the
notion of “stability,” the preservation of the parametric form
of the marginal distribution under addition. This is an es-
pecially important property for security returns, which are
summed over various holding periods to yield cumulative
investment returns. For example, if P, denotes the end-of-
month-¢ price of a security, then its monthly continuously
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compounded return z; is defined as log(P;/P;_1), and hence
its annual return is log(P;/P;—12) = z1+x4—1+- -+ T4_11.
The normal distribution is a member of the class of stable
distributions, but the nonnormal stable distributions have a
distinguishing feature not shared by the normal: they exhibit
leptokurtosis or “fat tails,” which seems to accord well with
higher-frequency financial data, such as daily and weekly
stock returns. Indeed, the fact that the historical returns of
most securities have many more outliers than predicted by
the normal distribution has rekindled interest in this liter-
ature, which has recently become part of a much larger
endeavor known as “risk management.”

Of course, stable distributions have played a prominent
role in the early development of modern probability theory
(see, e.g., Lévy 1937), but their application to economic and
financial modeling is relatively recent. Mandelbrot (1960,
1963) pioneered such applications, using stable distribu-
tions to describe the cross-sectional distributions of per-
sonal income and of commodity prices. Fama (1965) and
Samuelson (1967) developed the theory of portfolio selec-
tion for securities with stably distributed returns, and Fama
and Roll (1971) estimated the parameters of the stable dis-
tribution using historical stock returns. Since then, many
others have considered stable distributions in a variety of
financial applications; McCulloch (1996) has provided an
excellent and comprehensive survey.

More recent contributions include the application of in-
variance principles of statistical physics to deduce scaling
properties in tail probabilities (Mandelbrot 1997; Mantegna
and Stanley 1999), the use of large-deviation theory and
extreme-value theory to estimate loss probabilities (Em-
brechts, Kluppelberg, and Mikosch 1997), and the deriva-
tion of option-pricing formulas for stocks with stable dis-
tributions (McCulloch 1996).

4. DERIVATIVE PRICING MODELS

One of the most important breakthroughs in modern fi-
nance is the pricing and hedging of “derivative” securities,
securities with payoffs that depend on the prices of other
securities. The most common example of a derivative secu-
rity is a call option on common stock, a security that gives
its owner the right (but not the obligation, hence the term
“option”) to purchase a share of the stock at a prespeci-
fied price K (the “strike price”) on or before a certain date
T (the “expiration date”). For example, a 3-month call op-
tion on General Motors (GM) stock with a $90 strike price
gives its owner the right to purchase a share of GM stock
for $90 any time during the next 3 months. If GM is cur-
rently trading at $85, is the option worthless? Not if there is
some probability that GM’s share price will exceed the $90
strike price some time during the next 3 months. It seems,
therefore, that the price of the option should be determined
in equilibrium by a combination of the statistical properties
of GM’s price dynamics and the preferences of investors
buying and selling this type of security, as in the pricing
equation (1).

However, Black and Scholes (1973) and Merton (1973b)
provided a compelling alternative to (1), a pricing model



Statistics in the Social Sciences

based only on arbitrage arguments and not on general equi-
librium. [In fact, the Black and Scholes (1973) frame-
work does rely on equilibrium arguments—it was Mer-
ton’s (1973b) application of continuous-time stochastic pro-
cesses that eliminated the need for equilibrium altogether
(see Merton 1992 for further discussion).] This alternative is
best illustrated through the simple binomial option-pricing
model of Cox, Ross, and Rubinstein (1979), a model in
which there are two dates, 0 and 1, and the goal is to derive
the date-0 price of a call option with strike price K that ex-
pires at date 1. In this simple economy, two other financial
securities are assumed to exist: a riskless bond that pays a
gross rate of return of r (e.g., if the bond yields a 5% re-
turn, then » = 1.05) and a risky security with date-0 price
Py and date-1 price P; that is assumed to be a Bernoulli
random variable:

ulPy with probability =
"7\ 4R, with probability 1 — m,

)

where 0 < d < u. Because the stock price takes on only

two values at date 1, the option price takes on only two
values at date 1 as well:
with probability 1 — =.

c { Cy = Max[uPy — K,0] with probability 7
1 =
3)

Cy= Max[dPo - K, O]

Given the simple structure that has been assumed so far,
can one uniquely determine the date-O option price Cp? It
seems unlikely, as we have said nothing about investors’
preferences nor the supply of the security. Yet Cy is indeed
completely and uniquely determined and is a function of
K,r, Py,d, and u. Surprisingly, Cj is not a function of !

To see how and why, consider constructing a portfolio of
A shares of stock and $B of bonds at date 0, at a total cost
of Xy = PyA + B. The payoff X; of this portfolio at date
1 is simply:

)

uPyA + rB with probability =
"7\ dPyA+rB with probability 1 — .

Now choose A and B so that the following two linear equa-
tions are satisfied simultaneously:

uPyA + 1B = Cy, dPyA +rB = Cy 5)

which is always feasible as long as the two equations are
linearly independent. This is assured if u # d, in which case
we have

Cy—Cy

_uCyq—dCy
(u - d)PO, -

(u—d)r

A* = * (6)
Because the portfolio payoff X; under (6) is identical to
the payoff of the call option C; in both states, the total
cost Xp of the portfolio must equal the option price Co;
otherwise, it is possible to construct an arbitrage, a trading
strategy that yields riskless profits. For example, suppose
that Xy > Cj. By purchasing the option and selling the
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portfolio at date 0, a cash inflow of Xy — Cj is generated,
and at date 1 the obligation X; created by the sale of the
portfolio is exactly offset by the payoft of the option C;. A
similar argument rules out the case where Xy < Cy. Thus
the following pricing equation holds:

Co POA*-I-B*=l K’r—d) Cu+ <u—r) Cd] (7)
r u—d u—d

8)

% [m*Cy + (1 — 7")Cy), Tt =

This pricing equation is remarkable in several respects.
First, it does not seem to depend on investors’ attitudes
toward risk, but merely requires that investors prefer more
money to less (in which case arbitrage opportunities are
ruled out). Second, nowhere in (8) does the probability =
appear, which implies that two investors with very differ-
ent opinions about 7 will nevertheless agree on the price Cy
of the option. Finally, (8) shows that Cyy can be viewed as
an expected present value of the option’s payoff, but where
the expectation is computed not with respect to the original
probability , but with respect to a “pseudoprobability” 7*,
often called a risk-neutral probability or equivalent martin-
gale measure. [Contrast (8) with the pricing equation (1) in
which the discount factors ~y; ;45 are also present.]

That * is a probability is not immediately apparent and
requires further argument. A necessary and sufficient con-
dition for 7* € [0, 1] is the inequality d < r < . But this
inequality follows from the assumption of the coexistence
of stocks and riskless bonds in our economy. Suppose, for
example, that » < d < w; in this case, no investor will hold
bonds, because even in the worst case, stocks will yield a
higher return than r. Hence bonds cannot exist; that is, they
will have zero price. Alternatively, if d < u < r, then no
investor will hold stocks, and hence stocks cannot exist.
Therefore, d < r < w must hold, in which case 7* can be
interpreted as a probability. The fact that the option price is
determined not by the original probability =, but rather by
the equivalent martingale measure 7*, is a deep and sub-
tle insight that has led to an enormous body of research
in which the theory of martingales plays an unexpectedly
profound role in the pricing of complex financial securities.

In particular, Merton’s (1973b) derivation of the cele-
brated Black—Scholes formula for the price of a call op-
tion makes use of the Ito calculus, a sophisticated theory
of continuous-time stochastic processes based on Brown-
ian motion. Perhaps the most important insight of Mer-
ton’s (1973b) seminal paper—for which he shared the Nobel
prize in economics with Myron Scholes—is the fact that
under certain conditions, the frequent trading of a small
number of long-lived securities (stocks and riskless bonds)
can create new investment opportunities (options and other
derivative securities) that otherwise would be unavailable to
investors. These conditions—now known collectively as dy-
namic spanning or dynamically complete markets—and the
corresponding financial models on which they are based
have generated a rich literature and a multitrillion-dollar
derivatives industry in which exotic financial securities such
as caps, collars, swaptions, and knock-out and rainbow op-
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tions are synthetically replicated by sophisticated trading
strategies involving considerably simpler securities.

This framework has also led to a number of statistical
applications. Perhaps the most obvious is the estimation
of the parameters of It processes that are the inputs to
derivative pricing formulas. This task is complicated by
the fact that Itd processes are continuous-time processes,
whereas the data are discretely sampled. The most obvi-
ous method, maximum likelihood estimation, is practical
for only a handful of It6 processes—those for which the
conditional density functions are available in closed form;
for example, processes with linear drift and diffusion coeffi-
cients. In most other cases, the conditional density cannot be
obtained analytically but can only be characterized implic-
itly as the solution to a particular partial differential equa-
tion, the Fokker—Planck or “forward” equation (see Lo 1988
for further discussion). Therefore, other alternatives have
been developed, including generalized method-of-moments
estimators (Hansen and Scheinkman 1995), simulation es-
timators (Duffie and Singleton 1993), and nonparametric
estimators (Ait-Sahalia 1996).

Because the prices of options and most other derivative
securities can be expressed as expected values with respect
to the risk-neutral measure [as in (8)], efficient Monte Carlo
methods have also been developed for computing the prices
of these securities (see Boyle, Broadie, and Glasserman
1997 for an excellent review). Moreover, option prices con-
tain an enormous amount of information about the statis-
tical properties of stock prices and the preferences of in-
vestors, and several methods have been developed recently
to extract such information parametrically and nonparamet-
rically (e.g., Ait-Sahalia and Lo 1998, 2000; Jackwerth and
Rubinstein 1996; Longstaff 1995; Rubinstein 1994; Shimko
1993).

Finally, the use of continuous-time stochastic processes
in modeling financial markets has led, directly and indi-
rectly, to a number of statistical applications in which func-
tional central limit theory and the notion of weak conver-
gence (see, e.g., Billingsley 1968) are used to deduce the
asymptotic properties of various estimators, such as long-
horizon return regressions (Richardson and Stock 1989),
long-range dependence in stock returns (Lo 1991), and the
approximation errors of continuous-time dynamic hedging
strategies (Bertsimas, Kogan, and Lo 2000).

5. CONCLUSIONS

The three ideas described here should convince even the
most hardened skeptic that finance and statistics have much
in common. There are, however, many other examples in
which statistics has become indispensable to financial anal-
ysis (see Campbell, Lo, and MacKinlay 1997 and Lo and
MacKinlay 1999 for specific references and a more com-
plete survey). Multivariate analysis, especially factor analy-
sis and principal components analysis, are important aspects
of mean-variance models of portfolio selection and perfor-
mance attribution. Entropy and other information-theoretic
concepts have been used to construct portfolios with certain
asymptotic optimality properties. Nonparametric methods
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such as kernel regression, local smoothing, and bootstrap
resampling algorithms are now commonplace in estimating
and evaluating many financial models, most of which are
highly nonlinear and based on large datasets. Neural net-
works, wavelets, support vector machines, and other non-
linear time series models have also been applied to financial
forecasting and risk management. There is renewed interest
in the foundations of probability theory and notions of sub-
jective probability because of mounting psychological ev-
idence regarding behavioral biases in individual decisions
involving financial risks and rewards. And Bayesian analy-
sis has made inroads into virtually all aspects of financial
modeling, especially with the advent of computational tech-
niques such as Markov chain Monte Carlo methods and the
Gibbs sampler.

With these developments in mind, can there be any doubt
that the intersection between finance and statistics will
become even greater and more active over the next few
decades, with both fields benefiting enormously from the
association?
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Statistical research in marketing is heavily influenced by
the availability of different types of data. The last 10 years
have seen an explosion in the amount and variety of data
available to market researchers. Demand data from scan-
ning equipment have now become routinely available in the
packaged goods industries. Data from e-commerce and di-
rect marketing are growing at an exponential rate and pro-
vide coverage to a wide assortment of different products.
Web-based technology has dramatically lowered the cost of
survey research. Web-browsing data provide an important
new source of information about consumer tastes and pref-
erences, which is becoming available for a large fraction
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Statistics and Marketing

of the total consumer population. In this vignette we ex-
plore some of the implications of this data explosion
for the development of statistical methodology in market-
ing, with primary emphasis on the explosion in demand
data.

Scanning equipment has provided the market researcher
with a national panel of stores in addition to panels of
households, altering the focus of marketing research. These
data have stimulated a large literature on applied demand
and discrete choice modeling. Demand models at the store
level typically take the form of multivariate regression mod-
els in which demand for a vector of products is related to
marketing variables such as prices, displays, and various
forms of advertising. At the household level, demand is
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