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PERIODIC STRUCTURE IN THE BROWNIAN
MOTION OF STOCK PRICES

M. F. M. Osborne

U. S. Naval Research Laboratory, Washington, D. C.
(Received January 2, 1962)

The internal structure of stock prices is examined by comparison with
simple random walks of basic step }4, in which the individual price changes
AP are the step length, and the volume measures the rate at which the
steps are taken. It is found that there is definite evidence of periodic in
time structure corresponding to intervals of a day, week, quarter, and
year; these being simply the cycles of human attention span. The evi-
dence is not in the periodicity of the price sequences P (), rather in the
distribution of the first and second differences of P(¢), especially the second
moment of AP (or variance), and in the rate at which the steps are taken.
It is also shown that there is a periodic ‘space structure’ in the price co-
ordinate P, corresponding to the Brownian motion in the presence of
equally spaced sites of preferred occupancy and reflection barriers, at the
whole numbers. There is also marked evidence of ‘clustered’ activity,
the data being analyzed by methods appropriate to cosmic ray bursts,
or star counts on astronomical photographs. In general, the picture of
price motion as simple random walks is supported qualitatively; quantita-
tively there are some substantial departures from this simple picture.

T IS THE purpose of this paper to examine some internal properties of
common stock prices in detail, in order to see more precisely how the
general properties of Brownian motion previously reported™” arise. The
basic material of our discussion is the ensemble of sequences of numbers
(prices) in time, P;(t), where the index j runs over the members of the
ensemble, or individual common stocks, and ¢ is the time at which the
transaction giving the price, P;(t), is executed. We shall also consider
the ensemble of sequences of volume in round lots, V;(f,7). Here, we
must also specify the interval, r, of time to which the volume refers,
whether it is a single block of transactions at one instant, (=0) on the
tape, or the sum of all transactions for intervals r of a day, week, or month.
Now neither the set of numbers P;(¢) nor V,(t,7) is in fact normally
distributed, whether one forms a set by holding j fixed to a single stock
and letting ¢ vary, or conversely. But the following derived sets are nor-
mally distributed, approximately.™

1. log, P;(t) t fixed, j varying.

2. A(7) log, P;(t) =log. [P;(t+7)/P;(®t)] for either (a) =, ¢ fixed, j varying
(b) j, T ﬁxed, t=ty, o +, to +27‘, to +3T, ete.
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346 M. F. M. Osborne

We hope to show also that log,V ;(t,7) for either ¢, 7 fixed, 7 varying as in
2a or j, 7 fixed, ¢t varying at intervals 7 as in 2b, is approximately normally
distributed, provided 7, the interval over which the volume is summed, is
one day. For longer values of 7 (week, month), one might expect from
the central limit theorem that the volume would at least for the second
case (like 2b), approach a normal rather than a log-normal distribution.
We shall discuss whether this does in fact occur.

From either the price or volume ensemble of sequences, we can define
two types of distributions. An ‘across-the-market’ frequency distribution
is for a set in which only the stock index j is allowed to vary (cases 1 or
2¢ above). A ‘sequential distribution’ is for a set for which the members
form a sequence in time (2b) and for which the index j is held fixed. Dis-
persions from these two distributions are referred to respectively as across
the market or sequential. In the notation of reference 1, os=oc[A(7)log.P],
was an across-the-market dispersion; whereas, o, for marketindex changes,
and oy=+/ogFto,2=c[A(7)log.P]; were sequential dispersions. An
across-the-market dispersion for an interval 7 can be determined from data
from one interval 7. A sequential dispersion for an interval r requires N
nonoverlapping intervals of length 7, where N is the number of separate
observations in the data sample.

To estimate either a sequential or across-the-market dispersion we can
use one of two methods. If the number in the sample is ‘large’ (and in
practice 12 or more will be considered ‘large’), we will use one-half the
intersextile range as our estimate; i.e., one-half the range from the upper
to lower one-sixth of our sample. This is, in fact, a good estimate of dis-
persion if the sample is withdrawn from a normal population. If not, one
simply understands this estimate as one-half the range around the median
containing two-thirds of the data points.

For samples ‘small’ in number (3, 4, 5) we will simply take the range
from the largest to the smallest, times a correction factor determined under
the assumption that the parent population is in fact normally distributed. ™
Tor small samples from a normal population, the range is a fairly efficient
estimator of dispersion.

We can also summarize here the following statistical facts that we shall
frequently see. If we have a variable y that is log-normally distributed,
then Z=log y is normally distributed and the log of geometric mean of y is
the arithmetic mean Z. The log of median y is the median Z, close to
the arithmetic mean Z, if Z is normal, or y log-normal. If Z is a normal
variable, of median zero and variance o°, then for the log-normal variable
Y, z]—ymedian=e“2’2—1, a difference considered negligible unless o2 1.

A second point to note is that if we have a variable y whose probability
density distribution is ¢(y) dy (normal or not), then the variance of the
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variable Z=f(y) is approximately o,’/Z=c,’|0f/dy|i=;, if one term of a
Taylor series expansion for f(y) is a fair approximation over a range
y=g=o,. If we apply this approximate rule to the particular case of
Z=log y, we find ¢(Z) =0(log y)=Za,/7.

We shall have frequent use for x'-tests as measures of significance
and shall also have occasion to employ the following rule of thumb based
on the binomial distribution: The dispersion of the expected number in a
class interval of a histogram is approximately the square root of that ex-
pected number.

[3,13]

STOCK PRICES AS SIMPLE RANDOM WALKS

Wit tHIS background we can now examine some data. In reference 1
we showed that the observed across-the-market dispersion developed in
A(7)log.P for r=one day, o[A(day)log.Pl:=0s(day), was in order of
magnitude agreement with that computed for a typically-priced ($40)
stock, whose ‘average’ volume=total daily market volume/number of
issues traded, was 10 to 20 round lots per day, with 1 to 2 round lots per
transaction, and +$1¢ the step length. Figure 1 gives the actual number
of transactions plotted against the volume for a number of different stocks
for a given day, and it will be seen that the volume V is indeed a good
measure of the number of transactions 7. The line V'=1.5T fits the data
quite well, as we originally surmised.

While our original picture of a median priced stock and an ‘average’
volume seems to fit our data quantitatively, a little reflection will indicate
that it cannot possibly be correct in detail. The dispersion in position at
the end of 7 steps for a simple coin-tossing random walk, of step length
his o=~/Th=+/(V/1.5)h. If we apply this expression to stock prices,
where h=14 point is the step length, then we have the following two con-
clusions, which we can test by comparison with data.

(1) Suppose we compare the across-the-market dispersion of two
groups of stocks, each member of which trades in approximately the same
volume. One group starts in a price range $20-$30, the other starts in
the range $80-$120. Then if the above formula for ¢ is correct, the across-
the-market dispersion of changes in log, price for the low-priced group will
be approximately four times that for the high-priced group. For this
restricted experiment with AP denoting the change of price after 7' steps,
we have

a(AlogeP)ﬁ“a(AP/P)%o(AP)/Pgh\/Vm/Piniml. (1)

Figure 2, using data from the stocks listed in Table I, makes this
comparison, and it will be seen that the low-priced stocks do indeed have
a larger dispersion as predicted, but it is only 1.5 times as large as that for
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high-priced stocks—not four times as large as the simple theory would
indicate. This observation is in agreement with the tradition of the
market place that, other things being equal, low-priced stocks are per-
centagewise somewhat more volatile than high-priced; the quantitative
agreement with the simple theory is not very satisfactory.
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Fig. 1. Transactions per day vs. round lot volume per day, for October
30, 1959. Data from Fitch’s “A Daily Market Quotation Publication,”
138 Pearl St., New York 5, N. Y.

Price and ‘quality’ are sometimes considered to be correlated, and
there is some evidence that it is ‘quality’ rather than price which deter-
mines the dispersion. It is for this reason we have identified the stocks
of Fig. 2 in Table I, so that the reader may judge for himself the relative
quality of these samples of high- and low-priced stocks.

We have also plotted in Fig. 2 the theoretical curves for the average
volume indicated at bottom of Table I, using 1.5 round lots per transaction.
It will be seen that the theoretical dispersions are considerably larger than
the observed for the low-priced stocks; the data on high-priced stocks are
quite well represented. It will also be noted that the average volumes of
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Table I are considerably larger than are average volumes computed by
dividing the total market volume by the number of issues traded. For
the first six months of 1960 this would have been about 27 round lots per
day per issue.

Aside from the experimental evidence, one can put the objection to the
simple picture of steps of 14 point on purely theoretical grounds. Such

I T
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Fig. 2. Across-the-market dispersion (doubled) of Alog,P as a function
of time interval =, for two samples of 12 NYSE common stocks each, in the
$20-$30 and $80-$120 initial price range. Initial date January 4, 1960.
Data taken graphically from charts of Trader’s Research, Inc., Lambert
Airport, Missouri. The denoted range of uncertainty is whichever was
the larger interval, from 2nd to 3rd or 10th to 11th member of the sample.
The reason for the anomalous behavior of the data at 24 weeks is unknown.

behavior would contradict a previous assumption in reference 1. If this
simple picture were completely correct, the percentage risk (as measured
by dispersion of Alog.P for constant volume) would vary inversely as the
price, whereas in fact the percentage risks, or dispersion of Alog.P in high-
or low-priced stocks are nearly constant (to a factor 1.5), more nearly in
agreement with what we assumed for risk-taking in the face of values de-
termined by the Weber-Fechner law.

(2) A second prediction that the simple theory makes is that the dis-
persion of price changes should increase with the volume, more particularly
as 4/V/1.5. Which dispersion (sequential or across the market) and
what is the proper measure of volume is subject to interpretation.
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One interpretation and test of the above statement using readily avail-
able data, is to plot the across-the-market dispersion of 1000 or more
common stocks, taken from the histograms of “The Exchange,” against a
measure of the entire market volume (common plus preferred) for the corre-
sponding interval (F¥ig. 3). However, since the histograms giving the
dispersion were taken for mid-month intervals, whereas published volumes
were for month-end intervals, we have used as our measure of volume, the
arithmetic average of the four or five weekly volumes most closely spanning

TABLE I
IDENTIFICATION OF STOCKS PROVIDING DATA OF FiG. 2
$20-830 Class $80-$120 Class
Initial Median daily Initial Median daily
Name price volume in round Name price  volume in round
(approx.) lots (approx.) (approx.) lots (approx.)
Beech Aircr. 21 15| Ford 92 125
Am. Airlines 23 50| Nat. Lead 104 35
Sperry Rand 28 100 | US Gypsum 90 15
Admiral EL 23 30| Dow Chem. 97 50
Minn. Moline 23 20 | Merck 8o 35
Dome Mines 20 25| Zenith Rad. 112 50
Dresser Ind. 29 30| Ow. Ill. GL. 104 15
Am. Met. ClL 25 50| Kennecott 95 35
Champl. Oil 20 15 | Texaco 83 55
Sou. Pac. RR 23 6o | Int. Paper 130 30
Freeport Sul. 25 30| Eastman Kod. 106 35
Celanese 27 50| Air Red. 82 15
Average = 42 Average = 38

the time interval of the histogram. These volume averages were taken
graphically from charts. Note that this procedure tends to remove a
small systematic correlation between volume and dispersion because of the
fact that not all mid-month intervals contribute the same number of trad-
ing days (see discussion of Table VI). A similar systematic error for the
same reason presumably also affects the dispersion, which we have not
attempted to correct. A possible corresponding correction to the dis-
persion would be to divide the observed dispersion by the square root of
the number of trading or calendar days actually spanned for each mid-
month interval. We have not applied such a correction, since it is too
small to upset the conclusions drawn from Fig. 3.

The dashed line of Fig. 3 shows the theoretical dispersion developed
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for a market of stocks priced at $40 at the beginning of each monthly in-
terval, traded at an average rate of 1.5 round lots per transaction. Quanti-
tatively it will be seen that the data are moderately well represented by
the theory. The individual departures from the dashed lines are con-
siderable, but in order of magnitude our simple picture is still maintained.
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15+ 01958 w
. : 51959 2
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Fig. 3. Across-the-market dispersion (doubled) of Alog.P for one month
intervals, vs. volume for the same interval. Dispersion data were taken
from histograms in ‘“The Exchange” or ‘“Monthly Review’’ published by
NYSE. Volume data were taken graphically for the nearest coinciding 4-5
week interval from charts of Securities Research Corporation. The
dashed line corresponds to the theoretical double dispersion developed in
one month (4.3 weeks) by an ensemble of $40 stocks diffusing in 14 point
steps, at the indicated volume rate in round lots+1100, with 1.5 round lots
per transaction=step. 2o =2[V(wk, ra lots) - 4.3/1.5-1100]*2 (1/8.40). The
sample size increased over the interval of the data 1957 to 1961 from 1075
to 1150. The number of shares listed on the entire Exchange increased
from 4.5 t0 6.5X10° over the same interval. The dashed line should be con-
sidered an approximation, since the sample size is ~1100 common stocks,
whereas the volume refers to the entire NYSE (~1600 issues), including
preferred stocks.

In the interval 195661 covered by the data of Fig. 3, the total number
of shares listed for trading increased by 33 per cent because of splits, stock
dividends, and new listings. Presumably the average total market volume
increased for this reason alone. It does not seem entirely obvious that
this source of volume increase should increase the across-the-market dis-
persion of price changes according to the A/V /1.5 rule, even though one
purpose of splits and new listings is to increase trading. Therefore, in
Fig. 4 we have plotted the data of Fig. 3, with the volume coordinate
divided by the number of shares listed at the time the data were taken.
This gives the abscissa as an ‘average’ fractional turnover per week.
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Qualitatively, the same conclusion is reached as before. When the market
activity, or turnover, is large, so also is the across-the-market dispersion.
We can no longer plot a theoretical dashed line (as in Fig. 3) for a hypo-
thetical $40 stock, since we do not have a theory relating turnover to the
price dispersion developed.

MONTHLY TURNOVER=4.3 x WEEKLY TURNOVER

10 15 x10-3
— T T I T T 1 T I T I
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§ 4l -‘|5;\—°
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s 3 I & =t o 7] §
a S [ ] a = é
© ‘s A
(2\[] 12_ A % [e) A n B 3

o A s o =
EZQJ = O—--(;Tl ] 8 --- _ g
= s =m B o o

oa O A [we]
(s 10+ A B A =
iy ° o 01 O 6117 0=
— O — —— ] - ——
L 09 e ! 677 _
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AV WEEKLY VOL.
NO.SHARES LISTED

Fig. 4. Across-the-market dispersion (doubled) of Alog,P vs. ‘average’
turnover. The data are from Fig. 3, with volume data divided by the
total number of shares listed for each interval; data taken from the
‘“Monthly Review.” The numbers in the corners of Figs. 3 and 4 are con-
tingency tables about the median, and P is the probability of x? being
greater than the observed value of x2 for no statistical dependence.

TURNOVER PER WEEK =

THE VOLUME SEQUENCE

IN viEW oF our only partial success in relating the dispersions of the price
change sequences to the volume sequences, it might be interesting to try to
answer the simple question—What are the properties of the volume se-
quences? We have a theory that describes, at least approximately, how
the price sequences behave; it is equally interesting (at least from a purely
scientific standpoint) to try to make a theory for the volumes.
According to Fig. 1, the vast majority of individual transactions are
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for 1-2 round lots, and according to references 1 and 2, it is sufficient to
assume that successive changes of log,P are approximately independent
in the probability sense. Given some degree of success of this assumption
for the price changes, let us make similar assumptions concerning the
volume. Accordingly, we assume (A) that the probability of one transac-
tion (=21.5 round lots) occurring in any finite span of time 7, is independent
of the occurrence of any other transaction in that same span. We further
assume (B) that the probability of occurrence is proportional to the length
of 7. If these assumptions, which are both plausible and justified for
many physical situations, are correct also for the occurrence of a stock
market transaction, then we can make the following predictions about the
volume and its fluctuation, or sequential dispersion for any interval of time
length 7.

1. If V;(7) is, say, the daily (r =1 day) volume of the jth stock, then the num-
ber of transactions T';=V;/1.5 should follow a Poisson distribution (with j fixed).
If T is large (and in practice 10 or more would be large enough) then T should be
approximately normally distributed with a sequential dispersion, o7 =+/T, or
for the volume oy =+/1.5)7. Numerically, then a stock for which the arithmetic
mean daily volume was 100, the individual daily volumes would be normally dis-
tributed about 100, with a sequential dispersion oy =+,/150 = +12.2.

2. As a percentage of mean daily volume, the sequential dispersion of daily
volume for different stocks would decrease as the square root of the mean daily
volume. Equivalently, the Poisson law predicts ollog V(day)];=2c[V(day)];/
V(day),) =+/1.5/+/7(day);.

3. If one compares the sequential dispersion of volume for a single stock on a
daily basis with volumes for the same stock on a weekly or monthly basis, then the
percentage fluctuation or dispersion should decrease as the square root of the re-
spective time intervals. Thus oflog V(r =day, week, month)] should be in the
ratios 1, 1/4/5, 1/4/22 where the numbers are the number of trading days in the
specified intervals. Since 7 and V(r) should be proportional to each other (as-
sumption B), we may equivalently say that o[log V(r)];=20V (7),;/[V()];=+/15/
VV@i

One should note the distinction between 2 and 3 above. In 2 we in-
crease the volume by passing to different stocks (Fig. 6), keeping the time
interval fixed. In 3 we stick to the same stock, and increase the volume
by increasing the interval (Fig. 7).

Comparison of these conclusions from theory with observation reveals
some rather gross discrepancies, though the theory does give some qualita-
tively correct predictions.

Figure 5 tests, for a number of different stocks and the entire market,
the first conclusion that the sequential distribution of daily volumes of
individual stocks should be normal. Generally speaking, the distribution
is more nearly log normal, 5(b), than normal, 5(a), contrary to our pre-
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diction. The plots under (b) are more nearly straight than those for (a).
For the largest daily volumes, Standard Oil of New Jersey and the entire
market volume, the hypotheses of normality or log-normality fit the data
just about equally well, as indeed is to be expected for either a true normal
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Fig. 5. Cumulated sequential frequency distributions of daily volumes
of individual stocks, and entire market (broken scale, right) plotted to
test for normal (@) vs. lognormal (b) distribution. X Pullman, June-Dec.
1958; + Sou. Cal. Ed., June-Dec. 1958; A Phelps Dodge, Oct. 1957-May
1958; O Texaco, Oct. 1957-May 1958; l Am. Cyanamid, June-Dec. 1958;
@ U. 8. Steel, June 1958-Jan. 1959; O Stan. Oil (N.J.), Oct. 1957-Apr. 1958;
V total NYSE market volume, Jan.—Dec. 1960. The average sample size
for 6 months of data indicated is about 130.

or log normal distribution whenever the ratio dispersion/mean becomes
considerably smaller than unity.

Figure 6, using the data of Fig. 5, plus a few additional samples of
data, tests the second conclusion. Figure 6 uses the median volume as a
measure of the mean, a fair approximation except when ¢(V)/V@mea=21.
If one compares the dispersion indicated on TFig. 6 with the theoretical
values according to the Poisson distribution, the observed values are seen
to be much too large. Figure 6 also shows that the sequential dispersion of
log,V(day) does decrease with V(day), but much less rapidly than
1/4/Volume as the theory predicts.
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Figure 6 shows the sequential dispersion of log V(day) as a function of
increasing average V(day) in passing from one stock to another. Figure 7
[to test conclusion (3)] shows the same effect when the length of time-
interval determining the volume is increased for the same stock. The data
of Figs. 6 and 7 tend to agree with each other, as they should if assumptions
A and B were correct. Quantitatively, Figs. 6 and 7 both disagree with
the theory.

It would be quite possible from a purely artificial viewpoint to devise
a model in which successive daily volumes were independently and log nor-
mally distributed. If this were true of the data, then by central limit

2

[ +

Z 3 10 A ° ]

x — - o 3

W o ]

= o) N

- o -

52 POISSON V=2T v

Lo L v

Wl ey POISSON V=T

=z 2 I AR Looao gyl L1l |
10 100 1000 10,000

MEDIAN DAILY VOLUME (RD LOTS)

Fig. 6. The sequential dispersion (doubled) of log daily volume in
round lots vs. median volume, both taken from Fig. 5, plus a few additional
samples of data (1957-60) for the same stocks, and entire market. The
straight lines give the theoretical value of the double dispersion according
to Poisson’s law for the observed volumes, under the assumption of 1, or 2
round lots per trade. That is, 20(logV)=2/4/V, or =24/2/V.

theorem the weekly and monthly volumes would approach normality,
with sequential dispersions of log,V(r) decreasing as we mentioned, as
1/4/V. 1In fact this is not so. Figure 7 also shows the decrease of
o[logV (7)]; is much less rapid than 1/4/7V.

It should be noted that the data of FFig. 7 come from samples of 12
(day, week, month) consecutive values of volume. Were the 12 values
nonconsecutive, and synthetic weeks or months composed of nonconsecu-
tive daily data, one might expect the inverse square root dependence on
V for ollogV(7)]; to be more nearly fulfilled. We have not checked
this conclusion directly.

Figure 8 gives two examples of the details of the sequential distribution
of monthly volume. Figure 8 shows one example (a) which actually
turned out to be approximately normal, and one (b) approximately log
normal (both stocks also appear on Fig. 5, where their daily volumes are
more nearly log normal). Taken together, Figs. 7 and 8 indicate that in
general a month (22 trading days) is not long enough for the central limit
theorem to normalize the sum of 22 single day’s trading.
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The conclusion that we must draw from the observed size of the se-
quential dispersion of the volume, relative to the Poisson law predictions
(TFigs. 6 and 7), is that some intervals of time have a much greater prob-
ability to contain transactions than others of equal length, contrary to our
original and physically plausible assumptions (4) and (B). The above
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Fig. 7. Sequential dispersion (doubled) of daily (O), weekly (A),
monthly (1) log volumes, vs. median volume of the same data. Dispersion
and median were determined from twelve consecutive values of the daily,
weekly, or monthly volume. (a) Firestone: filled data points refer to
after the 3 for 1 split on March 24, 1960; open points, prior to the split.
(b) United Airlines. Daily data samples for (o) and (b) taken in 1960-61,
weekly in 1957-61, monthly in 1956-60. The lines give the theoretical
curve according to Poisson’s law (see legend Fig. 6).

conclusion, laboriously extracted from the nonagreement of Poisson’s
theory with observations, is a statement of a well-known property of the
market—a tendency for stock to be traded in concentrated bursts. In
fact, it is one of the major problems of governing the Exchange, to prevent
the concentrated bursts of orders from completely disrupting trading.
Figures 7 and 8b give some indication of the duration in time of the
bursts. According to these figures, a month is not long enough to smooth
out the nonrandom occurrence of bursts, and satisfy assumption (B) so
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that the percentage fluctuation in volume, or ¢[logV(7)];, would decrease
like 1/4/V or 1/4/7. In other words, stocks suffer extended periods of
excessive ‘interest’ (cf. volume), or lack of interest, lasting a month or
more. This conclusion seems to be correct, and actually a quite conserva-
tive statement about the duration of fads, or their opposite, aversions, in
the stock market.

The fact that the daily volume tends to be log normally, rather than
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Fig. 8. Cumulated sequential distribution of monthly volume, tested
for normal (filled data points) vs. lognormal (open points) distribution.
(a) Pullman, data from June 1945 to June 1957, N =144; (b) Phelps Dodge,
data from June 1952 to June 1961, N=108. Data taken graphically from
charts of Securities Research Corporation. No splits occurred in the span
of data.

normally distributed, can be expressed ‘theoretically’ in a plausible way
by saying that: if volume measures ‘interest’ or ‘attention’ to a stock,
then the increment (random) of interest is proportional to the interest
already present; i.e., people, like sheep, tend to develop more interest
because it is already there (and conversely). This tendency of people is
well-known to professional manipulators, who attempt to generate real
interest by producing a semblance of interest by spurious trading. This
statement of a possible ‘derivation’ of the log normal sequential distribu-
tion of daily volume, is one way of expressing the failure of Poisson’s
law. Evidently, if the presence of large volume ‘induces’ bigger volume
fluctuations, then the condition of independence of individual trades
[assumption (A)] necessary to derive Poisson’s law is not fulfilled.
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The method of analysis yielding the above conclusions about the non-
uniform rate of trading in the stock market was drawn from two physical
analogs of interest. Let us first suppose that the stock ticker is in fact a
cosmic ray Geiger counter, which records the ‘onization’ (separation of
buyer from his money, and seller from his stock) associated with the
passage of a particular elementary particle (name of stock) through the
“onization chamber’ (floor of the Exchange). By studying the counts on
our instrument we can decide if there are bursts of unusually frequent oc-
currence for any particular type of elementary particle, and how long these
bursts last. We conclude that the counts for our particles, as for the count
on real Geiger counters, are not uniformly distributed in time even when
we average or sum over intervals as long as a month.

A second analog concerns the distribution of the stars in space. Here,
the star counts on stellar photographs compared with the prediction of the
Poisson law show, unambiguously, that stars are nonuniformly distributed
in clusters in space, the clusters themselves are nonuniformly clumped
into star clouds or galaxies, which are themselves in turn clustered much
more than a random distribution of galaxies would indicate. Similarly,
stock trading is clustered into days of unusual activity, the days into weeks,
the weeks into months and months into seasons of excessive activity, much
more than a constant probability of occurrence in time would allow.

PERIODICITY IN TIME

In view oF the preceding discussion, it does seem reasonable to suppose
that there is a statistical relation between the total market volume de-
veloped over a day, week, or month, and the across-the-market dispersion
in price changes developed over the same interval. Figures 3 and 4 showed
this directly for intervals of a month; it seems reasonable to suppose a
similar effect for intervals of a day, a week, or even a year. In what
follows, we hope to show that there is definite evidence of strictly periodic
behavior in the volume for intervals of a day, week, three months, and one
year, and hence by implication a periodic oscillation in the across-the-
market dispersion of price change for the same interval of time. In this
way we will infer that there is a time periodic structure in price. It will
be noted that this periodicity is not of a type that would show up either
in Fourier or correlogram analysis of a single stock price sequence, or of a
single index sequence, nor can it be exploited for profit in any simple way.
This periodic dispersion is a periodic property of the ensemble.

Figure 9 shows a plot of the hourly rate of trading volume for several
successive days. The data show, as is in fact well-known, that there is a
quite characteristic and reproducible burst of trading at the beginning and
end of the trading day. Note that the 18lg-hour gap between trading
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sessions has been considerably compressed in Fig. 9. The question we now
agk is: How does the across-the-market dispersion of price changes during
the 514 hours of trading compare with that for the 1814 hour interval of
no trading? We can make this comparison by computing the across-the-
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Fig. 9. (a) Hourly volume rate of trading vs. calendar time, NYSE.
The trading of the last half-hour (3-3:30 P.M.) has been doubled to give
the hourly rate. (b) The across-the-market dispersion (doubled) of ‘open’
to ‘close’ (filled circles) and ‘close’ to ‘open’ (open circles) changes in log,P
for a sample of 12 NYSE common stocks, taken for the same time interval
as (a). The sample was taken under the letter N—Nafi to Nat. Fuel Gas;
data from Wall Street Journal. The range of uncertainty (light line)
corresponds to the largest range from interval, 2nd to 3rd, or 10th to 11th
member of the sample.

market dispersion of open to close price changes, and the same dispersion
of close to open prices, all of which are published in the Wall Street Journal.
In this way we can compare the dispersion for mostly volume with small
passage of time (514 hours) with mostly time (1814 hours) and little
volume. In practice the volume from ‘close’ to ‘open’ prices contains the
opening block.

Figure 9b shows that the price dispersion oscillates in phase with the
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volume, and gives a comparison of the across-the-market dispersion com-
puted from close to open price changes, with open to close price changes.
It will be noticed that the latter dispersions are appreciably larger than
the former, but much less than if the dispersion were strictly proportional
to 4/volume, since we have pointed out, the volume from ‘close’ to ‘open’

TABLE 1I
(@)
(The number of days of increase or decrease of daily volume of odd lot buying, VOLB
over previous day, for different days of the week. Holidays and post-holidays excluded
from the count.)

Mon. Tues. Wed. Thurs. Fri.

AVOLB>o 44 12 15 22 19

AVOLB<o 5 38 36 27 28 Data from 1/2/58 lo 12/31/58

AVOLB>o 43 15 17 22 20

AVOLB <o N 5 31 2 27 Data from 1/7/59 to 12/31/509

AVOLB>o 37 11 21 24 20 )

AVOLB<o s 32 26 2 25 Data from 1/4/60 to 12/1/60
®

(Contingency table test of the above data for the dependence of daily odd lot buying volume
‘increasing’ or ‘decreasing’ on ‘day of the week.”)

Mon. Tues. Wed. Thurs. Fri. Total
AVOLB>o 124 38 53 68 50 342
AVOLB<o 12 104 96 79 8o 371
Total 136 142 149 147 139 ;;
x?=138; P(x*>138)<Ko.0o1; n=4 degrees of freedom

is the opening block, usually only a small fraction of the total day’s trading
volume. Figure 9b confirms, on a daily basis, what we had already in-
ferred from the monthly data of Figs. 3 and 4. Hence, we can conclude
from the data that the across-the-market dispersion of stock price changes
has a rather well-defined diurnal period, when prices are considered as a
function of calendar, or total elapsed time, rather than a function of simple
trading time interval, for which 1 day=5%4 hours. These results have
the quite plausible and obvious interpretation that volume represents in-
terest or attention to stocks, and that prices tend to move under the impact
of this interest. Since the sign (up or down) of the motion is unspecified,
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the effect of the ‘attention’ shows up in the across-the-market dispersion,
which fluctuates periodically in the diurnal cycle of man’s attention span.

The next question is: Can one detect periods of greater length? The
diurnal cycle is obvious in the data, but the demonstration of the presence
of longer periods will require a somewhat more subtle statistical analysis.
Casual examination of the daily volume of either individual stocks, or for
the entire market, does not reveal any structure as obvious as that in the
hourly volume shown in Fig. 9a. Nevertheless, there are certain small
aspects of the market volume which do repeat themselves rather regularly
on a weekly basis. Table IT gives by day the number of occasions the odd
lot buying increased or decreased over the preceding day (on Monday the
preceding day would be Friday). 0Odd lot buying volume alone amounts
to about 10 per cent of the total market volume, as well as the odd lot
selling volume. It should be noted that the published figures for total
market volume refer to the sum of round lots only, exclusive of odd lots.
The relation of odd to round lot market is fully discussed in reference 5.

It will be seen that there is a quite systematic tendency for odd lot
buying to be larger on Monday than on Friday and to subside throughout
the remainder of the week. This structure is of course well-known, and is
sufficiently marked to be obvious to the eye when the odd lot buying or
selling data are plotted sequentially. We only give these data in order to
make comparison with other effects described below. A x? test of the
summary 2X5 contingency table, containing the number of occasions in
which the volume of odd lot buying increased or decreased from the previ-
ous day, vs. day of the week, shows that it is most unlikely that the average
probability of an increase or decrease (as given by marginal row totals) is
in fact independent of the day of the week. Hence, we conclude that the
odd lot buying has a significant weekly periodicity.

This periodicity has the simple and obvious interpretation that the odd
lot trader, professionally engaged in other matters during the week, tends
to make up his mind over the week-end when he has the time to do so, and
acts on Monday. The distribution in time of information from profes-
sional market advisors is geared to this schedule, as this information also
tends to come over the week-end. However, this distribution in time
deserves closer study, in view of the different type of periodicity of the
total market volume discussed below.

If we examine the total market volume (Table I1I) in a manner similar
to that in which the odd lot buying was examined, we see from the value
of x* and the associated probability that there is also a significant weekly
periodicity in the total market volume. It is a great deal less pronounced
than the periodicity in the odd lot buying, as it is just barely significant at
the 1 per cent level. More interesting, the significant increases for total
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market volume occur on Tuesday and Wednesday, whereas for odd lot
buying it was most pronounced on Monday. From this weekly periodicity
in the volume we infer a weekly periodicity in the daily across-the-market
dispersion of stock price changes. Presumably this price dispersion is a
maximum on Tuesday or Wednesday. One can interpret the data as
meaning that round lot traders, in the market as a business, tend to forget

TABLE III
(@) .
(The number of days of increase or decrease of total daily market volume, V, over pre-
vious day, for different days of the week. Holidays and post-holidays excluded from the
count.)

Mon. Tues. Wed. Thurs. Fri.
iIV/zZ zé z? zz zi z; Data from 1/2/58 to 12/31/58
ﬁ};iz z: f;’ zi ;Z :2 Data from 1/2/59 to 12/31/59
ﬁlljzz ;g fg iz zé ;Z Data from 1/4/60 to 12/2/60
®

(Contingency table test of the above data for the dependence of volume ‘increasing’ or
‘decreasing’ on ‘days of the week.”)

Mon. Tues. Wed. Thurs. Fri. Total
AV>o 64 83 85 67 57 356
AV <o 72 59 64 8o 83 358
Total 136 142 149 147 140 714
x2=13.5; P(x®>13.5) <o.01; n=4 degrees of freedom

it over a long week-end, make up their minds on Monday and Tuesday,
and act the next day.

In addition to the daily data on prices and volumes, there is also pub-
lished on each date ¢, four sequences of numbers that can be examined as
indicators of the state of the market. These are N,(t), Na(t), N.(¢), and
N(t), which are respectively the number of prices which advanced, the
number which declined, the number unchanged (all from previous day or
the last day traded), and the sum of these three, the number of issues
traded. The last one, of course, fluctuates much less percentagewise, than
any of the other three. The running sum B(T) =) /=1, IN.(t) —Na(t)]
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is the so-called breadth of market index. B(T) represents approximately
the median of prices, and by adjusting the scale of its plotting it can usually
be made to be approximately parallel to the well-known arithmetic aver-
ages that represent the mean. For simplicity’s sake, let us consider just
the sequence N,(¢), and examine it in a manner identical to that which was
used to show weekly periodicity in the daily total and the odd lot buying

TABLE 1V
(The number of days of increase or decrease in the ‘number of stocks advancing,” N,
over previous day, for different days of the week. Holidays and post-holidays excluded
from the count.)

Mon. Tues. Wed. Thurs. Fri.
ix:z: z: z; zg ‘3; Z; Data from 1/2/58 to 12/31/58
ﬁx:z: ;: :;’ ;g z; jz Data from 1/2/59 to 12/31/50
ﬁx‘:zz 3; ji ;g :f i; Data from 1/4/60 o 12/2/60

(Contingency table test of the above data for the dependence of IV, ‘increasing’ or ‘decreasing’
on ‘day of the week.”)

Mon. Tues. Wed. Thurs. Fri. Total
AN>o0 39 72 71 78 79 339
ANg<o 97 70 78 69 61 375
Total 136 142 149 147 140 714
x2=128.0; P(x?> 28) <o.01; n=4 degrees of freedom

volume. The data are summarized in Table IV, and it is seen that with
a chance of error less than 1 per cent we can conclude there is periodicity
in N,(t). Moreover, it can be easily shown that most of the contribution
to x* occurs on Monday, when the odds are approximately 214 to 1 that
N.(Monday) <N,(Friday).

This decrease of N, from Friday to Monday does not mean that ‘the
market’ (as measured by the breadth of market index) tends to drop on
Monday relative to Friday, or that the ‘velocity’ (first difference) of prices
is downward over the week-end. The decrease in N, does mean that
either (1) the ‘acceleration’ of the median price changes, or second differ-
ence is negative over the interval Thursday-Friday—-Monday ; this also says
that the breadth of market index tends to be concave down over Thursday
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to Monday. (2) A second possible interpretation is that the total number
of issues traded (and perforce N, also) tends to drop from Friday to
Monday.

This second alternative is eliminated when we examine Table V where
simultaneous data on N, and N, are assembled. Here it will be seen that
the number of issues N; tends to increase systematically on Monday relative
to Friday, so that the Monday decline of N, is to be interpreted as a
genuine tendency for negative or downward acceleration of prices over the

TABLE V

(Contingency table test for the number of advances, N, and number of issues traded,
N7, increasing or decreasing, vs. day of the week, both for the interval 4/8/60 to 6/23/61.
Data from Barron’s Weekly. A few weeks’ issues were missing from the file, which accounts
for smaller number of Monday (Friday to Monday changes) data points.)

(@)
Mon. Tues. Wed. Thurs. Fri. Total
AN,>o0 17 27 27 28 36 135
AN.<o 33 27 28 29 21 138
Total 50 54 55 57 57 273
x2=8.5; P(x2>8.5) =0.07; n=4 degrees of freedom
®
AN>o0 35 27 21 22 25 130
AN <o 15 27 34 35 32 143
Total 50 54 55 57 57 273
x?=13.6; P(x2>13.6) <o.o1; n=4 degrees of freedom

interval Thursday, Friday, Monday, even though prices may be rising
over the same interval.

One can compare the successive values of monthly volume to determine
the presence of a significant annual periodicity therein, in a manner identi-
cal to that in which daily volumes were examined to show periodicity of
one week. This is done in Table VI(a), which shows that it is most
unlikely that these monthly fluctuations could have occurred by chance,
under the hypothesis of no periodicity. However, certainly a part of the
large value of x* must be a consequence of the fact that the months are of
unequal length in days; i.e., the fact that the February volume was less
than January volume on thirty-three out of forty-five occasions must by
in part because of the fact that there are fewer days in February on which
to trade. We have endeavored to remove this contribution to x* by apple-
ing correction factors to the individual monthly volumes, which are listed
in Table VI(b). For example, 90 per cent of the January volume was
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compared with February volume for increase or decrease of volume and
the results tabulated in Table VI(c). The value of x* is almost cut in
half, but even so we can still conclude to a significant annual periodicity
in our monthly volumes.

The correction factors in Table VI(b) were determined by successive
ratios of the number of calendar days diminished by the number of holidays.
One might have preferred to use the actual number of trading days in each
month of each year, though it is not entirely clear that a correction based
only on trading time interval rather than calendar interval is necessarily
required. The actual corrections chosen were a compromise based pri-
marily on simplicity and ease of application. The volume data were taken
graphically from monthly charts of the Securities Research Corporation,
so that the correction factor only needed to be applied when visual inspec-
tion of the data suggested that use of the factor would change a volume
increase between successive months to a decrease, or conversely. The
proper correction to apply when examining monthly data with a computer
is one which might well be examined more closely.

Market reporters and statisticians regularly summarize the record for
months in which the market (as measured by an arithmetic average)
advanced or declined, and there are well-established traditions of the
market place that certain months are more likely than not to advance
(i.e., the summer rally, or decline in winter months). We can examine
this record of months of these advances and declines by the same con-
tingency table test used previously.

Our particular source of data is GRaNVILLE,'® who gives the percentage
of years in which each month showed a rise or fall of the Dow Index for
the years from 1886 to 1960. Accepting his percentages as correct, we can
convert them to frequencies of occurrence and test for the significance of
an annual periodicity; colloquially, the genuineness of the summer rally,
or winter as the season of discontent."”

It will be seen (Table VII) that the probability that the observed
variations of advances and declines in each month could have occurred
under the condition of identical probabilities for each month is 0.011.
Thus the tradition of the market place is in fact supported by the evidence,
but only barely so. A ‘1 per cent significance’ statistician would reject
the hypothesis of a real periodicity, whereas a ‘5 per center’ would accept
it. Personally we feel the effect is genuine, but small.

However, it should be noted that the above test, accepted as giving a
significant result, does not say that the mean of the market index changes
is significantly positive or negative in certain months. It does make this
statement about the median. The mean, and hence expectations, may
indeed also be significantly positive or negative in certain months, but
strictly speaking, the test does not tell us this.
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The inference from the weekly or annual periodicities in the volume is
that the across-the-market dispersion of price changes would also show
the same periodicity, since volume and dispersion were statistically con-
nected. We give in Fig. 10 and Table VIII some additional indirect
evidence that volume, hence also the across-the-market dispersion of price
changes, should have a three-month and also an annual periodicity. It is
commonly believed that there is some statistical relation between the
earnings sequence, earnings changes, the price sequence, and price changes.
Without going into the question of what the statistical relations between
these four sequences are, or when they are most pronounced, it would
appear reasonable to suppose that if there is some relation between prices
and earnings, the dates on which the information about earnings becomes
available would be related to the price changes at about the same time

TABLE VII

(Contingency table test for advance and decline of market average in a month, for dif-
ferent months of the year. Data from 1886-1960 from reference 5.)

J FM AMTJ J A S O N D Total

N (market advance) 38 26 26 38 40 40 44 47 30 36 36 37 438
N (market decline) 36 48 48 36 34 34 30 27 44 38 38 37 450
Total 74 74 T4 T4 T4 T4 T4 T4 T4 T4 T4 T4 838

x?=124.6; P(x*>24.6)=o0.011; n=11 degrees of freedom

Now information on earnings is not distributed uniformly throughout the
year, but is distributed in bursts about three months apart, with a sus-
tained burst of information after the end of the year, corresponding to
those companies that report annually (see Fig. 10).

Not knowing whether the information contained in these reports is
good or bad, or the extent to which the information has already been dis-
counted, it would seem reasonable to suppose that concentrated earnings
information would tend to increase, relatively, the across-the-market
dispersion of price changes at the time when information becomes avail-
able. Granville! assesses the effect of the concentration of earnings
reports on trading procedure.

Mgersos®™ gives data that show the tendency of prices to respond to
the prospect of presumably favorable information. A x* test of the 2X2
contingency Table VIII ‘before’ and ‘after’ news, vs. price changes greater
or less than zero, shows unambiguously that even the prospect of pre-
sumed favorable information, without knowing what the information
might be, makes prices jump in a systematic fashion. The Table shows
that the prices tend to rise before the supposed good news, and fall after-
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wards, so that dispersion is very likely to be largest on the day the most
news is released.

If we compare the above conclusions on periodicity with investigations
in the past searching for periodicities in stock prices, it will be seen that
the search has been primarily for periodicities in the prices themselves, or
in the first differences of prices. It is the first moment of these price
changes that measures the expectation of profit or loss.

It might be well to comment here on the interpretation of our con-
tingency table tests as indicating periodicity, with the results of a cor-
relogram or Fourier analysis. A significant x* test says that the fivefold
attribute ‘day of the week’ is significantly statistically related to the two-

TABLE VIII
(Contingency table test for the effect on stock prices of announcing a speaker giving
‘news’ at 129 lunch meetings of New York Society of Security Analysts. Zero changes
omitted from data.)

Price change Inteézf.olrgfni V:zyvseeks Intera\}zlérofl ezwvsveeks Total
AP>o 76 s1 127
AP<o 44 73 11y

Total 120 124 244
x2=12; P(x*>12)<o0.01

fold attribute; for example, volume ‘increasing’ or ‘decreasing’ from the
previous day. If our interpretation of periodicity is correct, it should
mean that the fifth serial correlation coefficient of daily volume changes
is positive and significantly different from zero (alternatively, that the
Fourier coefficient for a 5-day period is significantly different from its
value for a purely random sequence of numbers).

We have not been able either to prove or disprove the equivalence of
our x” test to a significance test applied to a correlogram or periodicity
analysis. In order to ensure that our positive results were not some subtle
statistical artifact, such as might be associated with the known first serial
correlation of first differences in a simple sequence of independent random
numbers, we have evaluated the contingency table ‘increase or decrease’
of successive random numbers, using standard tables of random numbers.
Such tables are grouped in units of five numbers, conveniently analogous
to data from a 5-day week. No significant periodicity from our x* test
was found in this case. Here we may safely conclude that our positive
results for a week, or a year, are not the result of a statistical artifact.
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PERIODICITY IN THE PRICE COORDINATE

Ler vus Now consider a different type of periodic structure, in the price
coordinate.”) The notion of a periodic space structure is a familiar one
in physics, which is replete with examples of 1-, 2-, or 3-dimensional
periodic space lattices. In the stock market the price or space coordinate
structure, which we are about to describe, is conventionally called the
phenomenon of resistance and support,™ or in economics the Taussig™
penumbra. There are actually two aspects of this phenomenon, which
can be separately interpreted as the aspect of congestion and the aspect of
reflection.

The congestion aspect states that there are price ranges in which a
given stock price spends an inordinate amount of time; equivalently, there
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Fig. 10. Number of earnings reports per week vs. calendar time.
Data from Barron’s Weekly, under letter A through F, NYSE. Gaps
simply correspond to missing issues from the file.

are many more transactions in this range than would be expected by chance.
The reflection aspect states that there are price levels at which a stock is
more likely than could be expected by chance to be reflected, or turned
back in a direction opposite to its previous motion, up or down. If the
particular reflection ‘barrier’ is above the price, the barrier is called re-
sistance; if below it, support. It is commonly believed that at least some
resistance and support levels occur together; i.e., once a resistance barrier
has been crossed, this same barrier will provide support on a future de-
cline. The above description, for us, is that of Brownian motion in the
presence of partly reflecting barriers. They need not have the same
reflectivity from both sides, and the reflectivity may vary with time.

The question that we ask here is, is it possible to show that the above
described phenomena actually exist, in a statistically significant sense?
When we consider simultaneously the ensemble of sequences of stock
prices, it is then possible to show that both the aspects of congestion and
reflection do exist, in the sense that we have described them. To show
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the congestion aspect, we have plotted in Fig. 11 the distribution of closing
prices, using only the last eighth. It will be seen that there is a pronounced
tendency for prices to cluster on whole numbers, halves, quarters, and odd
one-eighths in descending preference, like the markings on a ruler. The
nature of the effect may be readily verified by counting in any issue of the
newspaper, the relative frequency of closing prices which are even or odd
eighths. It should also be noted by comparing Figs. 11(a) and (b) that
the effect is more pronounced with a sample from the entire market than
if it is a sample restricted to a weekly volume greater than 50 round lots.

(a) (b)
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Fig. 11. Distribution of closing prices in eighths on NYSE, January 15,
1960, common and preferred. (a¢) Sample taken under A-K, all volumes.
(b) Sample taken under A-E, for weekly volumes greater than 50 round
lots. Data from Barron’s Weekly. The double arrow denotes the mean
and expected +dispersion, or fluctuation of the number in a class, for a
uniform distribution. o=+/N/8, where N is the total sample number.

This means that the ruler, or congestion effect, is more pronounced the
smaller the volume.

The ‘partially-reflecting-barrier’ aspect of resistance and support can
be demonstrated in the following way. If there are partially reflecting
barriers in the one-dimensional ‘field’ in which prices move, then maxima
and minima will tend to cluster on these barriers, more so than might be
expected for random walks without such barriers.

Now the published record contains the closing price, as well as the high
or low for a preceding fixed period (day, week, month, or year). This
high or low is a maximum or minimum for the data in the fixed preceding
interval only. But a ‘high’ for example, may or may not be a maximum,
if a ‘maximum’ is defined as a price greater than the nearest different
preceding or following price. A low may or may not be a minimum, if
minimum is similarly defined. In order to ‘enrich’ the content of ‘highs’
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or ‘lows’ with true maxima or minima (as defined above), the data of Fig.
12 have been censored, in that we have only plotted in the histogram data
for which the close was not equal to a high or low. For such data, one at
least of high or low, is in fact a maximum or minimum. This censored-
out fraction of the entire sample is quite appreciable for intervals of a day,
week, or month. For a year’s span of data, it amounts to only a few per
cent. The censored-out fraction for a year, as an example, does not corre-
spond to the published list of new highs and lows for the year (exactly an
interval of a year only as published at the beginning of the year). To
qualify for the censored-out fraction for the year, a stock must close high

up
65 =10%
33 8-10%
52 6-8%
+563 f— et %
171 | 2-4%
148 ] <2%
[6a ] NO CHANGE
DOwWN
157 ] <2%
142 1 2-4%
- 463 90 4-6%
44 6-8%
16 8-10%
17 210%

Fig. 13. Histogram of percentage price changes from “The Exchange’’
for 1090 NYSE listed common stocks for the month ending July 15, 1958.

(low) for the day, and at a price equal to or greater (less) than the pub-
lished high (low) for the preceding year.

The clustering of maxima and minima is shown in the plots of the ratios
Ny/N. (censored) against the eighth/fraction(Fig. 12). The charac-
teristic behavior of this ratio indicates a tendency for maxima to cluster
on the low side of integers and half-integers (7% and 34, Nx/N.>1); the
minima on the high side of integers and half-integers (14 and 5§, Nz/N, <
1). The clustering effect is more pronounced at the whole numbers than
the halves. The effect is also more pronounced the smaller the volume
[compare Figs. 12(a) and (b)].

If one were to speak in terms of physical analogs, one could say that
the diffusion of stock prices took place on a one-dimensional diatomic lat-
tice, in which the preferred sites of occupancy were the integers, and less
strongly preferred, the half-integers. The preferred sites also act as
‘scattering centers’ off which the ‘particles’ tend to ‘bounce.” At increased
‘temperature’ (cf. volume or dispersion) the importance of these sites as
preferred positions and scattering centers tend to diminish.
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The preference of human decision-makers for certain numbers over
others is not a peculiarity of the stock market. KmnparLr"™ gives several
examples of this phenomenon, which he calls “one of the most insidious
with which psychology has to deal.” The phenomenon is slightly different
in the stock market, since here the preference is not a consequence of
observational bias, or errors. It rather seems as though the collective
mind of the market were operating as a binary digital computer, with a
built-in preference for round (in the binary sense) fractions.

The existence of the ruler effect is probably responsible for what would
ordinarily be regarded as a most unconventional and even amateurish
graphical presentation of data. Figure 13, reproduced from “The Ex-
change” gives a histogram of monthly per cent changes of 1090 common
stocks. It will be seen that the members of the sample which fall precisely
on the class boundary at zero are treated as a separate class. Conventional
practice would have divided these equally between the upper and lower
classes, or else moved the class boundaries to odd integral percentages.
In this instance the editors of “The Exchange” are to be complimented
for faithfully reporting a peculiar phenomenon most unlikely to have oc-
curred by chance (by chance here meaning an equal probability with re-
spect to eighths of closing prices, or no ruler effect). A conventional
graphical representation would have obscured the phenomenon.

We can compare the expected (with no ruler effect) and observed
number of stocks which fall in the class ‘no change’ in the following way.
Let P; be the price of a common stock picked at random at the beginning
of the monthly period and P, its final price. The distribution of P; is ap-
proximately given by

®(X) dX =exp—[(X—X0)*/20x]/ (/27 ox) dX. (2)

Here X =log.P;. Using typical figures from reference 1, Figs. 4 and 6,
a median priced stock is given by ¢*° = $35= P;, and ¢x=0.65, correspond-
ing to the fact that two-thirds of stock prices fall into the range $18 to
$66. The distribution of S=log.P./P; is given by

V(S) dS=(1/7/27 os)exp—[(S—8,)*/205"] dS. (3)

This is essentially what is given by the histograms of “The Exchange’
(Fig. 13) with percentages expressed as decimal fractions. ¢ falls in
the range 0.04 to 0.07 (Figs. 3 and 4). S, is quite closely the deviation,
as a decimal, of the median of these histograms; it is usually (as in Fig.
13) less in absolute value than os.

If we make the assumption that X (i.e., the initial price) and S (ap-
proximately percentage of change as a decimal, in a month) are inde-
pendently distributed, then the joint distribution of S and X is
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—(X—Xg) 2/2axze—(s—so)2/2as"’

o(X,8) dX, dS=" dX ds. (4)

2mwosox

[Admittedly, this assumption of the independence of S and X, or that
“yolatility as a per cent is independent of price,” is an approximation,
since Fig. 2 gives evidence that the dispersion o5 does depend somewhat
on the price class (X) to which og refers. Nevertheless, the results which
follow do not depend in any essential way on this approximation. In
fact, the integrations both Py and P, which follow could all be carried out
completely numerically, using different dispersions for each price class.
Doing this would not alter appreciably the conclusions which we draw.]
From the distribution of S in I'ig. 13 we obtain the distribution of P; and
P as follows, using numerical values ¢5=0.045, So=-+0.0055.

Py\|0(8,X)
[> —_ P =3 —— —,—
$(Py, Py) APy dP, ¢(X log.Ps, S logeP1> S(p.p))| PP (5)
:e_(logcpl_xo)2/2.,X2e—(1ogeP2—logBP;—SO)2/2a52 dP1 dP2 (6)
21!'0'3 Ox Pl P2 '

Then for a sample size N;=1090 for the number of issues (Fig. 13), the
expected number in the class ‘no change’ of Fig. 13, since prices must
move by 1§ point, or not at all, is

Py=P1+1/16

EIN tuo enongey] = N1 f 0 f 6(P,Py) dPLdP,  (7)

9=P;—1/16
The integration over P, can be executed by taking the value of the integral
at the mid-point, P;, times 14, the range of integration, and the final result is

—802/20 g% 1/2)0 52
NI e 0%/20g e+(/)ax

271'0'5 Ox 8P10 (8)
=25,

S[N(no change)] =

using numerical values for Ny, Sy, s, ox, P10 given above. The observed
value of ‘no change’ is 64, which is well outside the expected variation, or
dispersion -=4/25 of the computed answer. Hence, we conclude that the
class ‘no change’ is much more heavily populated than could be expected
by chance; that is, with no ruler effect.

A similar calculation using equation (8) and a figure for the across-the-
market dispersion for one 24-hour calendar day can be made for the ‘un-
changed’ class which is published daily in the press. Typical observations
indicate that ‘unchanged’ averages N,=2200-250 stocks in 1961, with a
sample size N;=21200. The computed figure for N, with no ruler effect
is only about half the observed number.

An analog to the above phenomenon which may appeal to the mechani-
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cal-minded, is that stock prices move by a ‘slip-stick’ mechanism, like
motion with friction (resistance) rather than as a ‘smooth’ response to
economic forces. The sticking points are the whole, and to a lesser extent,
half integers.

The data of Fig. 12 contain an additional item which allows an interest-
ing comparison with the theoretical prediction given from stock prices
considered as simple random walks. The legend of this figure contains
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Fig. 14. The fraction of closing prices that are also highs or lows,
against the interval of observation. Data from Fig. 12 plus additional
data samples from the years 1958-61. The straight lines are the theoretical
values for a simple random walk, for 10 or 20 transactions=steps per day.

the censored-out fraction of the total number of stocks considered for
which the ‘close’ price was equal to either the ‘high’ or ‘low’ for the interval
considered. We have plotted this fraction against the length of the corre-
sponding interval in Fig. 14, and also the theoretical prediction for this
fraction under the assumption that there are 10 to 20 steps, or transactions
per day. FrLLer’s formula (reference 12, page 79), in his notation, gives
this fraction as 2us,=2/(wn)"?, where n is the number of steps. [To
derive this result, note his definition of ‘first’ maximum, equation (8.2),
rewrite his equation (4.6) with reversed inequality sign, and apply the
reversed path, or 180° rotation argument (p. 70) to both expressions.]
It will be seen that the 1/4/7 dependence predicted by theory is fairly
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well-confirmed by the observations, but the tendency for close prices to
be concentrated at highs or lows is even more pronounced than the already
very pronounced tendency to do this, which simple random walks exhibit.
Why stock prices should have this tendency in such an exaggerated form,
we do not know. This subject deserves further examination. We noted
in collecting the data for Fig. 14 that the censored-out fraction for intervals
of a day, week, month, year contained increasing percentages of inactive
and preferred stocks (also of low volume). This emphasizes that the data
of Fig. 14 should not be regarded as referring to a homogeneous sample of
common stocks, all trading at about the same volume, which the ‘theoreti-
cal’ lines of Fig. 14 tacitly assume.

Since the ruler effect indicating preference for even eighths was so

TABLE IX
OBseErVED NUMBER oF WrOLE NuMBER (No EicHTHS) Bips AND Asks IN Na-
TIONAL MARKET JUNE I2, 1961
Data from Wall Street Journal (first four columns)

Bids..............o o 136
Asks. ..o 73
Difference................ 63

Estimated dispersion of difference=+/136473=14.3, under assumption of equal
probability of whole numbers in bids and asks. Prob. (Diff.>63)<o.01.

pronounced, it was thought that some degree of preference might be mani-
fested in the units place for the whole numbers 0-9. A x* test on a number
of NYSE stocks against the hypothesis of equal probability for the ten
digits, 0-9, in the units place, gave no significant departures from equal
probability, for closes, highs, or lows, for the year, though an even-odd
discrimination or a preference for 0 and 5 might have been expected, and
might well be found by a more searching examination than we have carried
out. However, one interesting side effect was observed. It occurred to us
that such a digital effect, if it existed, would be the more pronounced in
the over-the-counter market, since here the volume per issue is smallest,
and it had already been observed that the ruler effect in eighths increased
with decreasing volume. The results of a x” test for digital preference in
the units place were ambiguous, but the following curious difference between
the bid and ask prices was observed. It amounts to the fact that the ruler
effect is more pronounced in the bid than in the ask price. If one ex-
amines the frequency of whole numbers (no eighths) in the bid and ask
prices for one page of over-the-counter quotations from the Wall Street
Journal, it will be seen (Table IX) that the difference in preference for
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whole numbers in bid vs. ask is much greater than could be expected on the
basis of equal preference. If this effect carries over to the NYSE it means
that on the books of the specialists (not normally open to public inspec-
tion) the distribution of limit orders to buy below the market is more
concentrated at whole numbers, or whole numbers and even eighths, than
the corresponding concentration of limit orders to sell above the market.
Such a different degree of clustering of orders above and below the market
should mean that motion downside is ‘jerkier’ (more slip and stick) than
upside motion. We have not tried to verify this conjecture. It should
be noted that the published prices used in Table IX are ‘outside’ prices,
presumably rounded off for public consumption. The ‘inside’ bid and
ask prices between dealers are closer together, and might show the effect
less.

It should not be supposed, in presenting the data in this paper, that all
the effects we have described are unknown to professionals trading in the
market; on the contrary, many of them doubtless are, though we have not
previously seen the evidence spelled out, and a significance test applied
in cases where the effect was not grossly obvious. TFor example, Granville
(reference 6, p. 162) gives a technique which exploits the barrier effect of
whole numbers, and the mechanics of trading and recording data in the
‘point and figure’ method™ gives tacit recognition to the ‘ruler’ and ‘bar-
rier’ phenomenon.

It would be appropriate to discuss here the relation of the results we
have found to previous statistical examinations of stock market and other
economic price series. Reference 15 and especially reference 16, give an
excellent summary of the difficulties and ambiguities associated with
analyzing time series by Fourier and correlogram methods, according to
autoregressive schemes, such as were first introduced by Yule. The
periodic in time dispersion, and ruler and barrier structure in prices which
we have shown, add to the difficulties which Kendall discusses so clearly.
These barriers tend to put into the price paths reversals of motion or
sequential changes of the sign of price changes. This in itself implies
negative serial correlation of price changes, which would tend to subtract
from any intrinsic positive correlation associated with the ‘inertia’ of
price motion, or tendency of price ‘velocity’ to persist, to use terms bor-
rowed from dynamics.

Evidence of negative correlation has been found by Moors™ for the
first serial correlation coefficient of weekly changes in log prices of in-
dividual NYSE common stocks. Kendall™ found small positive values
for the first serial correlation coefficient of weekly changes, but his data
referred to British stock indices, so that the two conclusions are not con-
tradictory.
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SUMMARY

We wourp like to summarize our discussion of the internal properties of
stock prices by making the following observations. The picture of chaotic,
or Brownian motion does not imply that there can be no underlying ra-
tional structure. We have tried to show that there is some underlying
structure associated with what appears superficially to be the epitome of
unrelieved bedlam. There are statistical tests for deciding whether a
commonly held belief about the market is in fact justified by the evidence,
and there are natural phenomena whose data present problems for analysis
quite similar to those offered by the market. The magnitude of the effects
we have shown and the way in which they were shown to be significant,
do not deny the validity of the premise that the most probable value of
the expected change in log, price from a random choice common stock at
a random time, is zero."! They rather emphasize that under specific
conditions and times, one can find a sample of stocks for which &(Alog.P)
is slightly different from zero. This conclusion is not in conflict with the
statement about the most probable value of &(Alog.P) used to derive,
following Gibbs, the elementary properties of Brownian motion.

The stock market is a gigantic decision-making phenomenon. It
deserves scientific attention from those who would like to understand how
decision making occurs, naturally, and in the large. As an economic
phenomenon, we believe the market can reproduce in a few weeks a scaled
version of supply-demand relations that would take many years to com-
plete in a different setting. As a high-speed economic phenomenon it
gives unique opportunities for the study of economic behavior.
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