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Tests of Financial Models in
the Presence of Overlapping
Observations

Matthew Richardson
University of Pennsylvania

Tom Smith
Duke University

A general approach to testing serial dependence
restrictions implied from financial models is devel-
oped. In particular, we discuss joint serial depen-
dence restrictions imposed by random walk, mar-
ket microstructure, and rational expectations
models recently examined in the literature. This
approach incorporates more information from the
data by explicitly modeling dependencies induced
by the use of overlapping observations. Because
the estimation problem is sufficiently simple in this
Jramework, the test statistics bave simple repre-
sentations in terms of only a few unknown param-
eters. As a result, relatively good size properties
are attained in small samples. In addition, the ben-
efit to overlapping observations and the advantage
of examining multiperiod time series are explicitly
quantified.

Many financial asset pricing models impose serial
dependence restrictions on time series. For example,
the random walk theory of stock prices (RWTSP)
implies that stock returns will be serially uncorrelated
and the fundamental restriction from rational expec-
tations models that forecast errors will be orthogonal
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to anything in the agent’s information set also imposes some form of
serial independence. In addition, many models of market microstruc-
ture generate testable serial dependence restrictions.

Using a procedure based on Hansen’s (1982) generalized method
of moments (GMM) procedure, we investigate new tests of serial
dependence restrictions and relate them to the existing tests. We are
concerned particularly with the use of multiperiod forecast errors to
test asset pricing models. For example, Cochrane (1988) has sug-
gested that low frequencies in the data (such as slow mean reversion
in forecast errors) cannot be captured by short-run (e.g., single-period)
correlation statistics. Traditionally, however, tests investigating mul-
tiperiod properties are severely limited by the number of observa-
tions. For example, for T observations and a j-period sum, the econ-
ometrician has at most 7/j independent observations.

We propose a statistical procedure that incorporates more infor-
mation in the data by explicitly modeling the dependencies induced
by the use of overlapping observations. This is important because the
use of overlapping observations can improve the properties of the
test statistics. While other statistical procedures have been developed
to account for overlapping data, the approach described here is of
special interest since results are derived analytically, hence avoiding
many problems associated with traditional sampling estimation tech-
niques.

In particular, these analytical calculations provide a number of
advantages over standard statistical procedures that adjust for over-
lapping observations. First, in many situations, the econometrician
would like to employ long lags; and whereas the standard procedures
would require estimation of many autocorrelations to take account
of the overlap, the analytical calculations reduce the problem to esti-
mation of only a few unknown parameters. For example, we can
replace the Hansen-Hodrick (1980) standard errors adjustment for
overlapping data in multiperiod regression tests with a very simple
form that is independent of the data. This leads to more desirable
size properties of the test statistics in small samples. Second, using
a procedure developed by Geweke (1981), we can make explicit (i.e.,
quantifiable) asymptotic power comparisons between different test
statistics. Since one of the purposes of asymptotic theory is its possible
application in small samples and in developing intuition, this pro-
cedure has potential widespread use. For example, we compare two
particular tests of recent interest to financial economists—namely,
the variance ratio and multiperiod autocorrelation tests for no serial
correlation—and find that there are substantial benefits to examining
multiperiod properties of the data. Third, the benefit of using over-
lapping observations is quantified. For example, we show that using
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Overlapping Observations

overlapping observations leads to a reduction in the variance of the
multiperiod serial correlation estimator of about one third.

This article is organized as follows: The general approach to testing
asset pricing models is introduced in Section 1. An important appli-
cation in finance—the random walk theory of stock prices—is dis-
cussed in Section 2. The size and power properties of these analytical
test statistics are investigated in Section 3. Some additional applica-
tions are discussed in Section 4. Section 5 is the conclusion.

GMM Test Procedure

In this section, a general procedure for testing serial dependence
restrictions implied by financial models in the presence of overlap-
ping observations, which is based on Hansen’s (1982) GMM approach,
is described. In order to test time-series implications from financial
models, the econometrician requires sufficient serial dependence
restrictions to identify the unknown parameters of the model. For
example, consider testing whether a time series €, conforms to a
particular set of serial dependence restrictions:

E[f(€,....&_,,0)] =0, ¢Y)

where 0 is an M-vector of parameters and f, is an R-vector.

With only weak assumptions on the &, it is possible to employ
Hansen’s GMM test procedure. Specifically, if the process ¢, is sta-
tionary and ergodic, and the second moments of £(-) exist and are
finite, then with a long series the sample moments of £(-) should be
close to its population moments; that is,

1 < oo
g-(0) = 7 D Gy &, )57 0. (2)
=1

The idea behind the GMM procedure is to choose values for 8, such
that the sample moment conditions, g, (), equal zero. If the number
of parameters in  (denoted by M) is less than the number of restric-
tions in the vector f(-) (denoted by R), then the system is overiden-
tified and no values of the parameters will set all the moment con-
ditions equal to zero. It is possible, however, to find values of 6 that
set a linear combination of the R-vector g, (f) equal to zero:

Agr ® =0, 3)

where Aisan (M x R) matrix and g, (6) is an (R X 1) vector. Equation

(3) suggests a particular class of estimators, namely those that can

be derived from linear combinations of the moment conditions.
Note that the moment condition (3) involves overlapping data: for
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example, at tand ¢t — 1, £(*) and f;_ () have j — 1 &’s in common.
The problem then is to choose a weighting matrix 4 that will lead to
desirable properties for the estimator 6 in the presence of overlapping
observations. A desirable property for the estimator 6 is that it have
minimum variance—covariance matrix. Hansen (1982) shows that the
optimal choice of 4 (denoted by 4*) under this criterion is

A* = D{S; %, )
where
_ . |98.(6)
So= 2 EUL() £, (6)

Of special interest to this paper, under the assumptions stated
above, Hansen (1982) proves the following results:

VT (6 — 6) = N, [D;S5 Do),
T8.(0)'S518:(0) ® X

Moreover, the above results are valid even when D, and S, are
replaced by their consistent estimators, denoted D, and S;. For exam-
ple, one popular way to calculate S;in practice is to employ the two-
step procedure of Hansen and Singleton (1982): this yields an esti-
mator S, (), where § is a consistent estimate of § and S,(-) is the
sample estimate of the variance-covariance matrix of the moment
conditions.’

The analysis in this article is concerned with an alternative pro-
cedure for estimating D, and S, when the errors are serially uncor-
related and conditionally homoskedastic. Specifically, since this prob-
lem of estimation is sufficiently simple, the matrices D, and S, can
be derived analytically. That is, a consistent estimate of S, can be
provided by S,(6), where 8 is a consistent estimate of 6 and Sy(+) is
the analytical variance-covariance matrix of the moment conditions
under the null hypothesis. The advantage here is that the asymptotic
matrices will have simple representations in terms of a small number
of unknown parameters. This leads to relatively desirable size prop-
erties and helps form intuition regarding the statistics and estimators.

1 Depending on the model’s assumptions, different estimators have been proposed. Some of these
include estimators given in Hansen and Singleton (1982), Hansen and Hodrick (1980), Eichen-
baum, Hansen, and Singleton (1988), and Newey and West (1987).
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Example: Variance restrictions. As an illustration of the analytical
approach advocated in this article, consider the following variance-
ratio test [see Cochrane (1988), Lo and MacKinlay (1988a), Poterba
and Summers (1988), and others, for applications of variance ratios).
Specifically, if €, is uncorrelated with past é,_,, then the variance of
the sum of the €’s should equal the sum of the individual variances
of € In the GMM representation, consider the following sample
moment conditions to illustrate the variance-ratio restrictions:

E&,—m
1 Z & . 1
gT(mly m,) = ? 2 (02 €r—i ]ml)z - jm, Vi<k @)
= ( s gt—i - kml)z — km,

where
m; = ith central moment of e,.
From Equation (3),
Agr(my, my) =0, ®

where A is a 2 X 3 matrix and gy is a 3 x 1 vector. The procedure
that has generally been followed for choosing 4 is the two-step pro-
cedure of Hansen and Singleton (1982). Specifically, in the first step,
minimize the sum of squares g,(-)’g, () with respect to the two
parameters, m, and m,. In the second step, use these estimates 77,
and 7, from the first step to construct a consistent estimator for Sy;
for example, one choice for a consistent estimator is the sample
estimator of S,. The sample estimate S, (,, 77,) is then used for the
optimal choice of A4:

A% = D;(m,, my)’ Sy (my, m,)1. )

However, since the GMM test is derived under the null hypothesis,
itis possible to replace the estimator S, (7, m,) in (9) by its analytical
counterpart S, under the following assumptions:

(i) e, is stationary and ergodic;
(i) E[E@&,_,e,_,]=0;
(i) E[e2e, ) = m
(iv) E[ee_)=0 Vi Vj+ k+#0;
(v) all relevant moments m, — m, exist and are finite;

where €, = €, — m,, and m, = ith central moment of e,.

It is shown in Appendix A that under these assumptions S,, the
analytical variance-covariance of the moment conditions, is given by
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m, Jms km,
So =\ jm; jimy + A(j)mj Jkm; + B(k, j)m3 |, (10)
km, jkm, + B(k, j)m3 kim, + ACR)m3

where
AC) = ((z‘— 2);‘3(4:'— 1))7
Bk, ) = (3(212 —3)(k—j+ 1; + G = 1)) — 11))_

This analytical derivation allows us to calculate the serial depend-
ency in the moment conditions induced by the use of overlapping
data, which is important because estimation of the sample variance-
covariance matrix involves using the same observation numerous times
in calculating the autocovariances. Therefore, for a given 7, there can
be a substantial dependence in the elements of the sample estimator,
S;. With the analytical derivation, this is not the case because the only
unknown parameters are m,, m,, and m.

Given the derivation of the analytical variance-covariance matrix
in (10), the optimal GMM estimators, 2, and #7,, can be obtained by
solving the system of equations

DSSElgr(mu m,) = 0, (11)
where
-1 0
D,={ 0 -7l (12)
0 —k

Specifically, inverting (10) and then substituting this matrix back into
equation system (11) results in the following estimators:

i, = % A (13)

1 T [k—1 2
- (jz_l)_z gt—x‘_krhl
T =1 L =0

x [27k2 + (1 — 2j) k]2, (14)

For j =1, the estimate of the variance reduces to the well-known
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sample variance of a population. If the é’s were normally distributed,
then maximum likelihood procedures would give us the same esti-
mate. Under alternative distributions, this will not necessarily be the
case and, therefore, the estimator #2, may be inefficient relative to
maximum likelihood estimators. Since in general the distribution of
¢, is unknown, maximum likelihood estimation will not, however, be
applicable.

Using Hansen’s (1982) results given earlier in this section, it is
possible to calculate the variance-covariance matrix of the estimators:

VAR (7i1,, 7i1,) =<Z§ m, + C"?] k)mg)’ (15)
where
C(j R =[12(j —2)(4j — D& + (182 — 103 + 45 — 9k
+ 2(j — D7 + DYBEQ2jk — 252 + D] - (16)

The benefits of the analytical derivation are not solely in parameter
estimation. Under the null hypothesis, it is possible to test the over-
identifying restriction that ¢, is uncorrelated with past values. In this
particular case, there are three equations and two parameters (m, and
m,) and hence one overidentifying restriction. Using the optimal
estimators given in Equations (13) and(14), it is possible to calculate
the value of this x? statistic analytically:

T [k—1 2
TgrSy'gr= 3{]2 [2 € i~ kﬁh]

=1 =0

-1 2)2
—k [2 € —jﬁh”
=0
X [ij(k = 7)Qjk — 252+ 1) Tm3)™!
~ x3 a”n

In order to relate this result to the previous literature, consider the
variance ratio test examined by Cochrane (1988) and Lo and Mac-
Kinlay (1988a), among others. The variance ratio test is a special case
of the restrictions in (7) with j= 1 and k allowed to vary, and m, in
(17) set equal to 72,. To see this, in Section 1.1 of their article, Lo
and MacKinlay show that, under the assumption that the ¢, are i.i.d.
normal-random variables,
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~

(1/k) ZL, [Ef:ol €r—i — kml]z
VT

- -1
2z, [et - 7”1]2

202k — 1D (k — 1)) 18)

aiy
w(o 222D
Dividing (18) by its variance and squaring the resulting statistic gives
the desired result.

With applications in which the GMM procedure is desirable, it has
been standard to rely on numerical minimization procedures to esti-
mate the parameters and form the overidentifying restrictions test.
The problems with numerical optimization, such as failure to con-
verge, are well-known. The analytical procedure overcomes these
difficulties by providing closed-form solutions for the parameter esti-
mators, their standard errors, and the x? statistic.

In addition, for the analytical GMM procedure, no parametric
assumption like normality is necessary. Along with stationarity and
ergodicity of €, all that we require for the derivation of (17) are
assumptions (ii)—(v). Lo and MacKinlay, however, derive a more gen-
eral, heteroskedasticity-consistent variance test. Their test relies on
the calculation of standard errors of lagged serial correlation coeffi-
cients using White’s (1980) heteroskedastic-consistent covariance
matrix estimator. In contrast to the above derivation and their deri-
vation of (18), however, this heteroskedasticity-consistent statistic
involves the additional estimation of numerous autocorrelation
parameters.?

Application: The Random Walk Theory of Stock Prices

The RWTSP has long been of interest to financial economists. Recently,
Lo and MacKinlay (1988a) have presented evidence that, in the short
term, stock prices do not follow a random walk. In addition, Fama
and French (1988), Poterba and Summers (1988), and others have
presented evidence that it is possible to forecast long-term move-
ments in stock prices from past returns. The test strategy of these
authors has been to calculate correlation statistics over different return

Note that if the heteroskedasticity is specified, then this can be incorporated directly in the cal-
culation of S,. Otherwise, the GMM test can be adjusted in a similarly more general way. Specifically,
an analogous heteroskedasticity-consistent estimator can be developed using the variance-covari-
ance matrix estimators provided by, among others, Hansen and Singleton (1982); see, for example,
Equation (9). These estimators do not require assumptions (ii)-(iv). Although the assumptions
are generally weaker, the problem with these procedures is that for large j they require the
estimation of numerous autocovariances. This can lead to poor size properties in small samples.
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horizons and to treat any of the statistics that are significant as evi-
dence against the RWTSP. This ignores the joint implications of the
RWTSP and the experimental design.

On the other hand, the approach described in Section 1 allows a
joint test of the hypotheses:

j j

COV(E ﬁt+i7 2 t+i—) Viz1, (19)
=1 =1

where R, is the return on a stock in period #.

Consider Fama and French’s (1988) ordinary least-squares (OLS)
regression test corresponding to condition (19). Let § = R,. In the
GMM framework, the corresponding moment conditions from OLS
are the normal equations:

& (a(), B())

T €4y — a(]) - 6(]) (211:=1 gt—j+i)
1 T [2’:‘=1 gt+i - a(]) - 6(])(zjz=1 gl—j+i)j|[z';'=l gt—j+i]
== > . (20
= 2, € — a(k) — ﬁ(k)(zz—l € pvd)
[Ef=1 € — a(k) — B(R) (L, et—k+1)][zz=l et—le+i]

The OLS estimators § have asymptotic normal distributions. Fama
and French (1988) calculate the standard errors of the individual g,
estimators using the method of Hansen and Hodrick (1980). This
introduces sampling error because of the additional nuisance param-
eters involved in estimating cross-equation correlations. Under the
Hansen and Hodrick (1980) assumptions, the variance—covariance
matrix of V(6) has a _representation independent of the data. The
typical elements of V(B) are given by (see Appendix B for derivation)?

272+ 1 s(j, k) + 52
. é(j)) 3j Jk
= A = , (21
V(B) = var &) G k) + 7 S 1)
ik 3k

® Note that these multiple-restriction results carry through to other settings. For example, consider
the variance ratio statistic given in Equation (18) [denoted by V(;)]. Using similar techniques, it
is possible to show that for any lags j and k& the variance-covariance matrix of V() and V(&) is

2/ -G -1 23k—j—- DG -1
3j 3k
2Bk —j-DG -1 2Qk— 1)(k—1)
3k 3k
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where
s(j, k) = ZJS [((j — Dmin(j, & — D). (22)

Three important observations are in order. First, the asymptotic
standard error given in (21) is independent of the data. Since the
goal of the Hansen—Hodrick (1980) method under the null hypothesis
is to estimate consistently the asymptotic standard errors given in
(21), this formula greatly simplifies the estimation problem. Note also
that when j = 1, we obtain the familiar result that the standard error
of the autocorrelation coefficient is 1/\/7T. Therefore, one way to view
the result from (21) is that it extends the literature on test statistics
for serial correlation of a random variable, €, to sums of that random
variable, 2/_, €.,. To the extent that Z/_, ¢,,, can provide more infor-
mation concerning the long-run properties of ¢, this extension has
useful applications.

Second, the OLS multiperiod autocorrelation estimators are, in gen-
eral, highly correlated. As j approaches &, the correlation between
8() and B(k) approaches unity. Note that even if the time horizons
are far apart, these estimators may still be highly correlated. For ex-
ample, even if & > 2j, the correlation between B(k) and B() can still
be over 50 percent.

Third, it is straightforward to incorporate this joint dependency in
designing test statistics. One such application is in testing the joint
hypothesis that 8(5) = B(k) = --- = 0. Let 8 equal the M-vector of
different multiperiod correlation estimators. One popular statistic is
the Wald statistic:

B VB8 = % (23)
More generally, let D be any N X M matrix. Then
T[DBY[DV(B) DT (DB] = G (24)

The difference between a joint test of the restrictions (19) and a
series of individual tests as proposed by the earlier authors is similar
to the difference between reporting individual #-statistics versus an
overall Fstatistic [see, e.g., Gibbons, Ross, and Shanken (1989) for
an application to multivariate tests of mean-variance efficiency]. While
it is nontrivial to test formally restrictions of this type using standard
techniques, the derivations follow quite naturally in our procedure.
This distinction between a joint test and several individual tests is of
practical importance since Richardson (1989) shows that Fama and
French’s (1988) rejection of the random walk on the basis of indi-
vidual correlation statistics is not necessarily justified in a joint system.
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Multivariate series. Many applications in financial economics deal
with multivariate time series. For example, the results dealing with
serial correlation in stock returns have been reported for many dif-
ferent groupings of assets and for a variety of countries. Using the
framework in this article, it is possible to incorporate the joint nature
of these different series. Consider testing for serial correlation in
€102 -, €x. Assume that the €,’s are contemporaneously correlated
but otherwise satisfy assumptions similar to those of Hansen and
Hodrick (1980):

(@) E[(gnl - I"’e',,) & — Mzm)] = Ogpems

(b) E[(gnt - ”’e',,) (gmt—j - /J'e'm)] =0

(o) E[(gm - I"’e',,)z(gmt—j - ,'l’e'm) (Epri — l“'e'm)] =0,

Vji* k+0,Vn m,
(@) E[(Er = pe)* ey — Hs,)Y] = 0%,0%,.

Stacking the 2 X N normal equations from OLS for the Ne,,’s, we get
the individual OLS serial correlation estimators of each series €,,.
Using the procedure in Appendixes A and B and Hansen’s (1982)
distributional results, the asymptotic distribution of the estimators is

B V.3

1 p% - pin
0 ph 1 :
XN}, S ) (25)
0 : : .o
piy e e 1

where p; is the correlation coefficient between ¢, and €,. In practice,
all we need do is replace the correlation coefficients p,, with consistent
estimates and form test statistics analogous to those derived earlier.

Properties of the Statistics

In this section, some of the properties of the statistics discussed in
Sections 1 and 2 are investigated: notably, the variance ratio and
multiperiod autocorrelation regression tests.

3.1 Size

In this subsection, we perform Monte Carlo simulations relating to
the size of the variance ratio and regression tests. For each of the
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5000 replications in each simulation, 720 observations were inde-
pendently drawn from a normally distributed random variable.

Variance ratio test. We compare two particular ways of estimating
the weighting matrix for the variance restrictions given in (7). The
first estimator is the analytically derived estimator in Equation (10),
denoted S,(6), where the vector § contains consistent estimates of
the moments m,, ..., m,. The other estimator is the one suggested by
Hansen and Singleton (1982). It is the sample variance—covariance
matrix of the moment conditions associated with overlapping data
given in (9), denoted S;(§).> For the moment conditions given by
Equation (7), let j=1and k= 40.5

Average estimates for the elements of S,(#) and S, (8) are reported
inTable 1. S,(0) is considerably closer to the true asymptotic variance-
covariance matrix of the moment conditions, S,, than S, (8) [note
further that in about 5 percent of the simulations S, (f) was not pos-
itive definite]. For example, consider the (3, 3) element: S;(f) is only
85 percent of its true analytical counterpart S,, while, in contrast,
S,(8) estimates precisely. These results take on increasing importance
for the size of the test as shown in Table 2. The overidentifying statistic
Tg:S'grusing the Hansen-Singleton S, (8) estimator behaves more
like a x* with two degrees of freedom than a x? one. For example,
the 5 percent value is 5.11 versus a x¥'s table value of 3.84; its average
(mean, variance) estimates are (1.34,2.65) versus a x3’s (1.0, 2.0);

The parameters were chosen to match those of the equal-weighted index of stock returns (m, =
0.01001, m, = 0.005685). In order to avoid the normality assumption, we also calculated a bootstrap
distribution of monthly returns on the index (1926-1985). By construction, the random variables
will be i.i.d. with a discrete distribution that places equal probability on each of the returns. The
idea is that the unconditional moments of this distribution will match the sample moments of the
actual returns. The simulations were robust to the distributional changes.

One problem with the Hansen and Singleton (1982) estimator is that it is not guaranteed to be
positive definite. There are other variance-covariance matrix estimators, however, that are assured
to be positive definite; for example, see Eichenbaum, Hansen, and Singleton (1988) and Newey
and West (1987). These procedures are not particularly suited for the long lag structure we have
here. For example, the Newey and West (1987) estimator fares relatively poorly because it imposes
specific declining weights on the autocorrelations of the moment conditions—in this example, we
can calculate the weights explicitly (see the example in Section 1) and, unlike the Hansen and
Singleton (1982) method, these weights do not correspond to those of Newey and West (1987)
for a given jand T. The Newey and West (1987) procedure is a general method for taking account
of a variety of econometric problems; its appropriateness for a particular situation is, therefore, at
the discretion of the econometrician. Ignoring the cases that were not positive definite, S;(6)
provides the “best” performance, so it is, therefore, the only one reported.

These lags are chosen to coincide with the number of lags used elsewhere in the literature. For
example, in most applications, the lags have varied between 2 and 120; hence, 40 lags represents
a conservative choice. When j = 1, the various estimators yield similar estimates for the (1,1),
(1,2), and (2,2) elements of S,, although S7(8) does pick up some spurious correlation. Hence,
only the (2,2), (2,3), and (3,3) elements are reported.
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Table 1

Estimates of the covariance matrix of moment conditions

Method (1,3) element (2, 3) element (3, 3) element

True S, 0.000000 0.002568 2.758924

Analytical S,(8) —0.000020 0.002571 2.755560
(0.000002) (0.000005) (0.004090)

Hansen-Singleton S,(8) —0.000395 0.001931 2.317565
(0.000706) (0.000054) (0.030715)

Two ways of estimating the variance-covariance matrix of the GMM variance moment restrictions
for tests of serial correlation are compared; namely, an analytical one-step procedure versus the
more standard Hansen and Singleton (1982) two-step procedure. This estimator provides the
weights for the GMM statistic given in Table 2. The standard error of the estimates is given in
parentheses.

=1
T E, — km)? — kmy

Hy: & ~ ii.d., N(0.01001, 0.005685)

L & —m,
g(m,, m)) = — 2 @b e, — jm)? — jm,
T\

and its average p-value is .56. In contrast, the analytical-based over-
lapping statistic’s behavior is closer to its x2asymptotic distribution.

Apparently, the reason for the success of the analytical estimator
So(8) is that it reduces sampling error. By calculating the variance—
covariance matrix under the null hypothesis, the problem is reduced
to estimating only m,, ..., m,. In contrast, calculating the sample vari-
ance-covariance matrix S,(f) involves estimating 240 autocovari-
ances at various lags as well as m,, ..., m,. Intuitively, by the time the
econometrician has calculated his 200th moment, the same data has
been used numerous times in estimation. This induces sampling error
into the estimation process.

Table 2
Size of test
Test statistic: Tg} (17, #,) S1g, (s, 1#,)
H,: & ~ i.id., N (0.01001, 0.005685)

Method Mean 5% level Average p-value
xi 1.00 3.84
Analytical 0.96 3.28 0.51

[1.77] (0.004)
Hansen-Singleton 1.34 5.11 0.56

[2.65) (0.004)

Details of the small sample distribution of the analytical and Hansen-Singleton statistics are re-
ported. The asymptotic distribution using either estimator is x? with one degree of freedom. The
statistics for the different methods were computed from 5000 replications of independently drawn
normally distributed data. Standard errors are in parentheses; variances are in square brackets.
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Table 3 )

Standard errors of §

Method 12 lags 60 lags 120 lags

Analytical SE; 0.107 0.258 0.408

Hansen-Hodrick SE; 0.105 0.231 0.294
(0.0001) (0.0005) (0.0013)

Hansen-Hodrick SE; (6 < —0.25) 0.092 0.190 0.257
(0.0001) (0.0008) (0.0024)

Hansen-Hodrick SE; (8 > 0.25) 0.109 0.252 0.323
(0.0001) (0.0009) (0.0031)

Two ways of estimating the standard errors of the OLS serial correlation estimators for multiperiod
time series are compared; namely, an analytical one-step procedure versus the more commonly
used Hansen and Hodrick (1980) method. The statistics for the different methods were computed
from 5000 replications of independently drawn normally distributed data. The standard error of
the estimates is given in parentheses.

T

1 oy —a— 6<24-1 gl—j+1)
gr(a, ﬁ) = 7. 2

"~ [211-1 &y —a— ﬂ<2{=1 zt—]+i>] [271-\ El—j+l]

H,: & ~ iid., N(0.01001, 0.005685)

Regression test. With respect to the regression test of Section 2, we
attain similar conclusions. Simulation evidence from 5000 repetitions
is reported in Table 3. Specifically, the average standard error of 8 is
given for lags 12, 60, and 120. The Hansen-Hodrick method under-
states the standard error (it is trying to estimate) for all lags chosen.
Not surprisingly, this underestimation is more severe for longer lags
as more moments need to be estimated (i.e., two for every additional
lag). For example, the understatement is 2 percent, 11 percent, and
28 percent for lags 12, 60, and 120, respectively.” The fact that nui-
sance parameters affect the Hansen and Hodrick (1980) standard
errors is best illustrated by comparing these standard errors for dif-
ferent values of ,8 under the null hypothesis. When we stratify the
sample conditional on extreme values of ﬂ, Table 3 shows that the
understatement is even more pronounced for low values of 8.

Table 4 reports the small sample distribution of the two statistics,
,3(])/\/(212 + 1)/3j and ﬁ(])/SEHH, for lags 12, 60, and 120. Note
that the B(;)’s have been adjusted for small sample “bias” using
the method described in Fama and French (1988). Relative to
normal table values, the analytical statistic of Equation (21), B(;)/
\V/(2j% + 1)/3j, is biased toward acceptance. For example, with 60
lags at the one-sided 10 percent level, the statistic represents the 14

Part of this bias can be attributed to the well-known negative bias present in sample autocorrelations
(of the &’s and OLS residuals in this case). Specifically, Kendall (1954) shows this bias is negative
and that it increases with the lag. Huizinga (1983) extends this discussion to overlapping data.
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Table 4

Size of tests

Method

(lags) Mean 0.01 0.05 0.10 0.25 050 075 090 095 0.99
N0, 1) 0.00 -2.32 -1.64 —-128 —0.67 0.00 067 128 164 232
Anal. (12) —-0.02 -230 -1.66 -132 —0.69 -0.04 065 124 1.61 225
Anal. (60) 003 -189 -134 -110 -0.59 000 061 119 152 215
Anal. (120) 000 -1.64 -113 -092 -052 -006 046 1.01 1.38 2.04
H-H (12) -0.05 -257 -178 -141 -0.71 -—0.04 0.65 122 159 223
H-H (60) —-0.06 =279 -192 -—-146 -0.71 000 063 120 1.60 2.32

H-H (120) —0.08 —-342 -200 -153 -0.80 —0.08 059 137 195 3.38

The small sample distribution of the analytical and Hansen-Hodrick statistics is compared. The
serial correlation coefficients for periods of length 12, 60, and 120 are then divided by their
corresponding standard error estimator in order to provide an empirical distribution of the “#
statistic.” Note that the OLS coefficients are adjusted for small sample “bias” using the method
described in the appendix of Fama and French (1988). The asymptotic distribution using either
estimator is standard normal. The statistics for the different methods were computed from 5000
replications of independently drawn normally distributed data.

Test statistic:

b
SE(8)

jy = \ /Lt
Anal. SE(8) = \/;;

H-H SE(B‘,) = SEHH(ﬁ,) Hansen-Hodrick

percent table value. On the other hand, the statistic based on Hansen
and Hodrick (1980) is biased toward rejection—at the 10 percent
level, this statistic represents only the 7 percent table value. Which
particular statistic is desirable depends upon the econometrician’s
own preference on acceptance/rejection biases. Nevertheless, the
analytical statistic is not only computationally easier, but also has
sampling variation from only one source—namely, the 8( ;) estimator.
In contrast, B(7)/SE.y also includes variation in the standard error
estimator, SEy;;. This is because the Hansen-Hodrick method requires
estimation of 2j autocorrelations, which introduces sampling error
into their procedure.

3.2 Robust power calculations

Under fairly weak assumptions, the estimators and statistics in Sec-
tions 1 and 2 have well-known asymptotic distributions. Small sample
considerations aside, the sizes of these tests are, therefore, straight-
forward to calculate. Under similar types of assumptions, what can
we say about the power of these tests? Unfortunately, most of the
specific power results available are based on Monte Carlo simula-
tions—that is, they are specific to a particular, parameterized distri-
bution. Monte Carlo analysis provides a useful gauge for evaluating
aymptotic approximations. It does not on its own (i.e., without the-
oretical justification) provide an alternative to asymptotic theory.
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Using a procedure developed by Bahadur (1960) and Geweke
(1981), we perform large sample comparisons between tests using
different multiperiods and different test designs. In particular, we
compare the approximate slopes (‘‘asymptotic power”) of the differ-
ent test statistics given in Sections 1 and 2. Intuitively, the approxi-
mate slope of the test is a measure of the rate at which the null
hypothesis becomes more and more incredible as sample size
increases. Geweke (1981) shows that if the test statistics have a lim-
iting x2 distribution under the null hypothesis (as they do in Sections
1 and 2), then asymptotically the approximate slope equals the prob-
ability limit (plim) of the statistic under the alternative hypothesis
deflated by sample size. In addition, the ratio of these slopes between
any two statistics, denoted 4 and B, will be T%/T*, where T* is the
minimum number of observations needed to reject the alternative for
given power. Furthermore, in contrast to Monte Carlo analysis, the
approximate slope results will be robust to parameterized distribu-
tional forms. For example, if the alternative is an AR(1) with uncor-
related innovations, then the approximate slope depends only on j
the length of the holding period, and p, the autoregressive parameter.

With respect to the GMM approach discussed in Sections 1 and 2,
it is possible to calculate the approximate slopes of the regression
and variance ratio tests analytically. This is especially convenient
because we can quantify the benefit of exploring multiperiod prop-
erties of €. For example, consider the following alternative model to
the one given in Sections 1 and 2:®

€=+ (p - 1) 2 P s

i=1

lpl <1, E@M@}=0, E[@d-]=0. (26)

In Tables 5 and 6, the optimal multiperiods are provided for the
variance ratio test [denoted (j*,£*)] and regression test (denoted j*)
given in Sections 1 and 2. The periods are optimal in terms of max-
imizing the approximate slope for different values of p.> The optimal

8 To see this alternative in light of previous studies, suppose ¢ were stock returns through time. This
alternative is then equivalent to a first-order autoregressive process [AR(1)] on prices. We also
considered other alternative processes; namely, an AR(1) in returns and a mixture of an AR(1) and
a random walk in prices [see, e.g., Fama and French (1988) and Poterba and Summers (1988)].
The approximate slope results coincide with simulations given in Lo and MacKinlay (1988b) and
Poterba and Summers (1988) for these alternatives, respectively. For purposes of space, we provide
only the AR(1) in prices since it provides the “least successful”” comparison. It, therefore, is a more
conservative choice. The others are available upon request.

® Using Equations (17) and (21), it is possible to calculate a formula for the probability limit of the
sum of squares (i.e., the approximate slope) for the variance ratio and regression test, respectively:
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Table 5

Approximate slope calculations for the variance-ratio test

p c (AN ) k * jt c (j‘,z)/c(j’,k‘) CU’,k’+50)/C([‘.k‘)
.99 0.00122 214 1 0.021 0.986
.98 0.00245 107 1 0.041 0.952
97 0.00369 71 1 0.061 0.910
96 0.00494 53 1 0.081 0.866
.95 0.00621 42 1 0.101 0.822
94 0.00749 35 1 0.120 0.777
93 0.00878 30 1 0.140 0.735
.92 0.01009 26 1 0.159 0.697
91 i 0.01141 23 1 0.178 0.661
.90 0.01274 21 1 0.196 0.625
.89 0.01409 19 1 0.215 0.594
.88 0.01545 17 1 0.233 0.568
.87 0.01683 16 1 0.251 0.539
.86 0.01822 15 1 0.269 0.507
.85 0.01963 14 1 0.287 0.491
.84 0.02170 13 1 0.304 0.470
83 0.02249 12 1 0.321 0.452
.82 0.02393 11 1 0.338 0.435
.81 0.02541 11 1 0.355 0.414
.80 0.02689 10 1 0.372 0.401
.79 0.02839 10 1 0.388 0.383
.78 0.02991 9 1 0.405 0.371
77 0.03145 9 1 0.421 0.356
.76 0.03297 8 1 0.437 0.347
75 0.03458 8 1 0.452 €.333

Approximate slope comparisons of variance ratios using different period lengths are provided. The
approximate slope cY? is a measure of the rate at which the null hypothesis (i.e., the &’s are
uncorrelated) becomes more and more incredible as sample size increases under a given alternative
[i.e., if § represents growth, then the alternative is an AR(1) in levels]. The period lengths denoted
byan “*” are the optimal ones in that they maximize the approximate slope (i.e., relative asymptotic
power). The final two columns show the sensitivity of the approximate slope calculations to de-
partures from the optimal lag length, k&*.

Alternative: & =4, + (p — 1) 2, p*,_;  |p| < 1,7, iid.
=1

31 = o) — k(1 = pDP
2jk(k — ) (2jk — 252 +1)(1 — p)?
j*, k*€argmax c¢®

¢ = plim(grS;ign =

multiperiod is an increasing function of p; this confirms the intuition
that, as the mean-reversion alternative becomes closer to the random
walk case, more power will come from examining multiperiod prop-
erties of the data. For example, consider p = .95 and the variance
ratio test. Comparing the approximate slopes for & = 2 and k& = k¥,
the ratio is approximately 10 percent. This implies that about 10 times
as many observations are needed to reject the null hypothesis when

31 = p*) — k(1 — PP
2jk(k — j)Qjk — 272 + D(1 — p)?’

(3 ) _za-py
phm(zj'z + 1'3) 2P+ D

plim(gr Wogr) =
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Table 6

Approximate slope calculations for the regression test

p ¢l jt Cl/C/‘ Cj'+2$/cj'
.99 0.00153 125 0.016 0.987
.98 0.00309 62 0.032 0.957
97 0.00465 41 0.048 0.916
.96 0.00623 31 0.064 0.867
95 0.00783 25 0.080 0.816
.94 0.00944 20 0.095 0.777
93 0.01106 17 0.111 0.732
92 0.01271 15 0.126 0.686
91 0.01436 13 0.141 0.649
.90 0.01604 12 0.156 0.606
.89 0.01772 11 0.171 0.570
.88 0.01942 10 0.185 0.539
.87 0.02114 9 0.200 0.512
.86 0.02284 8 0.215 0.490
.85 0.02462 8 0.228 0.457
84 0.02635 7 0.243 0.441
.83 0.02815 7 0.257 0.414
.82 0.02989 7 0.271 0.391
.81 0.03174 6 0.284 0.380
.80 0.03356 6 0.298 0.360
79 0.03532 6 0.312 0.342
.78 0.03720 5 0.325 0.335
77 0.03911 5 0.338 0.319
.76 0.04097 5 0.351 0.305
75 0.04277 5 0.365 0.292

Approximate slope comparisons of OLS serial correlation estimators using different period lengths
are provided. The approximate slope ¢’ is a measure of the rate at which the null hypothesis (e,
the &’s are uncorrelated) becomes more and more incredible as sample size increases under a
given alternative [i.e., if ¢ represents growth, then the alternative is an AR(1) in levels]. The period
lengths denoted by an “*” are the optimal ones in that they maximize the approximate slope (ie.,
relative asymptotic power). The final two columns show the sensitivity of the approximate slope
calculations to departures from the optimal lag length, &*.

Alternative: & =7, + (p — 1 2 p* i, lp| <1,4,iid
i=1
- 3j(1 — o2
] = 2 | =
¢ phm(z;'z +1 ﬂ) 422 +1)

j* € argmax ¢

k is chosen to equal 2. This is especially interesting given that the
case k = 2 reduces to the well-known one-period serial correlation
estimator. Table 6 shows that a similar pattern holds for the regression
test (i.e., the ratio of slopes for j = 1 and j = j* is 8 percent). Fur-
thermore, since the asymptotic distribution of the regression and
variance ratio test is xZ, it is possible to compare their approximate
slopes as well. For all values of p the regression test has higher relative
power. For example, at p = .95, the ratio of the plim of the optimal
regression test to the optimal variance test is 1.26. Therefore, the
variance ratio test needs approximately 25 percent more observations
to achieve the same power.

To check the robustness of these asymptotic power comparisons
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Table 7
Approximate slope calculations/small sample power

Regression test Variance test
Lag Power Power
(=5 ¢ (5% size) cam (5% size) cam/ct
12 0.00680 0.381 0.00389 0.257 0.592
24 0.00783 0.413 0.00560 0.497 0.715
36 0.00739 0.329 0.00615 0.574 0.833
48 0.00654 0.233 0.00618 0.733 0.945
60 0.00569 0.130 0.00596 0.727 1.05
72 0.00495 0.045 0.00566 0.684 1.14
84 0.00434 0.029 0.00532 0.678 1.22
96 0.00385 0.011 0.00499 0.688 1.30

Evidence is provided on the approximation of the asymptotic power procedure (i.e., the approx-
imate slope comparisons) to small samples. The approximate slope is a measure of the rate at
which the null hypothesis (i.e., the &'s are uncorrelated) becomes more and more incredible as
sample size increases under a given alternative [i.e., if € represents growth, then the alternative is
an AR(1) in levels]. ¢/ and c@¥ represent the approximate slopes of the OLS serial correlation
regression statistics and the variance ratio statistics, respectively, for different period lengths. The
“Power” column represents the actual small sample power of these tests under this alternative.
With respect to the simulation, the distributions of the innovations are normally distributed; 720
observations are drawn for each replication; and the simulation contains 5000 repetitions.

w
Alternative: &, =4, + (p — 1) 2, p*"F,us  p =95, i.id.

3[i(1 = p*) — k(1 = )P
2jk(k — )2k — 22 +1)(1 — p)?
3j ﬂz> _ 3/ - p)?
272+ 1 4272 +1)

cd = plim(g;‘soﬂgT) =

= plim(

against small sample implications, Table 7 shows the small sample
power of the statistics (from a Monte Carlo simulation) and the
approximate slopes for p = .95 with lags 12,24, ..., 96. The approximate
slope results suggest that the optimal multiperiod for the regression
and variance ratio tests are lags 24 and 48, respectively. Similarly, the
Monte Carlo small sample results imply maximum power is also
achieved at these lags. Furthermore, this similarity between ‘“‘asymp-
totic power” and small sample power seems to be present for other
lags. For example, the value of the approximate slope and the mag-
nitude of the small sample power have correlation coefficients across
lags equal to .96 for the regression test and .73 for the variance ratio
test.’ The approximate slope calculations fare less well in direct
comparisons of the regression and variance ratio test. As implied by
the approximate slope theory, Table 7 shows that the small sample

1% Note that the actual power of the regression test drops off more quickly for higher lags than would
be predicted by the approximate slope procedure. This is because higher lags effectively reduce
the sample size and, therefore, the asymptotic justification. The regression test is affected more by
this problem since the number of observations equals 7 — 2j; whereas with the variance ratio test
the number of observations is 7 — j. With respect to the variance ratio test, Lo and MacKinlay
(1988b) formally discuss some of the limitations of large lags in small samples.
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power of the regression test is greater than that of the variance ratio
test for lag 12. With longer lags, however, the magnitude of the
approximate slopes does not coincide with actual power. For exam-
ple, the variance ratio test starts achieving higher power at 24 lags
even though the ratio of the approximate slopes is only .715. More-
over, its 73 percent power at lag 48 exceeds the regression test’s
maximum power by about 30 percent. Nevertheless, all in all, the
approximate slope comparisons do provide a fairly accurate account
of the power properties of these statistics.

3.3 Overlapping observations

The analysis in Section 3.2 suggests there can be a real gain to choos-
ing j greater than unity. For example, given an AR(1) in prices and
p = .95, the approximate slope was over 12 times that of the single-
period serial correlation estimator. Suppose the alternative distribu-
tion is such that the optimal j is greater than unity (denoted by j*),
and consider the regression test of Section 2. Should the econome-
trician use j* overlapping periods for a given sample of 7* obser-
vations or use nonoverlapping periods for a sample of T*/;j* obser-
vations?

Hansen and Hodrick (1980) consider this question in their article
and show that in general the econometrician is better off using over-
lapping periods. Because of the simple structure of the estimation
problem in this article, it is possible to quantify this benefit to over-
lapping data. Specifically, the standard errors of the statistics for the
overlapping and nonoverlapping case, respectively, will be given by

2j*% + 1 J*
\VaFar—zm \/;

Taking the ratio of these standard errors for large T* results in
approximately 22 percent higher standard errors in the nonoverlap-
ping case. Note further that for fixed j*, as T* increases, the square
of these serial correlation statistics will both have asymptotic x? rep-
resentations. In terms of approximate slope comparisons, the ratio of
the slopes for the overlapping to nonoverlapping case is 1.5. There-
fore, in order to achieve the same power, the nonoverlapping statistic
requires about 50 percent more observations. It is in this sense that
there is a definite gain to using overlapping observations.

Applications

This section discusses potential applications of the above procedure.
The important point from these applications is that under fairly weak

246



Overlapping Observations

assumptions it is possible to test the joint serial dependence restric-
tions from financial models even in the presence of overlapping data.

4.1 Market microstructure models

The recent availability of transactions data, which has made possible
a whole new series of empirical investigations, has also introduced
a host of potential measurement problems related to market micro-
structure effects, such as the induced first-order negative serial cor-
relation from the bid-ask spread or from nonsynchronous trading.
The issue is how financial models that neglect market microstructure
effects are to be tested using data that reflect these effects. This requires
that we be able to differentiate these effects from more fundamental
pricing effects.

The GMM procedure given in Section 1 offers a potential solution,
since enough restrictions are placed on the market microstructure
and the financial asset pricing models that it is possible to test jointly
the restrictions imposed by the models while simultaneously esti-
mating the parameters. For example, consider the bid-ask model
posed by Blume and Stambaugh (1983), among others:

In(p) =p+1n(p_) +&  p=~0+38)p, (27)

where p, is the recorded price at time ¢, p, is the “true” price at time
¢, and 9§, is a mean zero i.i.d. random variable, independent of p,.

The econometrician would like to test the validity of model (27)
and simultaneously estimate parameters governing the fundamental
process p, and the bid-ask spread 3,. Let m, and o2 be the variances
of true log returns and the spread, respectively. Then, in the spirit of
Section 1, one possible set of moment restrictions is

&r(u, my, a3)
In(p./pi—1) — 1
1T Un(p,/b.-p) — ju)* — jm, — 203
== 2| U0(B/Bid) — kuF — kem, — 201 | Vikl (28)
“\ MnCp/p_) — tup — Im, — 203

It is possible to identify all the unknown parameters {u, m,,0%} (i.e.,
D, is full rank) because the market microstructure effect diminishes
with holding period length. In addition, it is possible to test the
overidentifying restrictions using the GMM procedure. (See section
1.) Smith (1989) investigates different market microstructure models
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and applies them to transactions data on the Dow Jones 30. In addition
to formally testing these models, Smith (1989) is able to differentiate
the market microstructure effects from more fundamental pricing
effects. Since multiperiod variances are compared to single-period
variances in (28), the use of overlapping observations is desirable as
it increases the number of observations and also the precision of the
estimators.

4.2 Rational expectations model
Consider the first-order condition from a specific consumption-based
asset pricing model [see, e.g., Lucas (1978)]:

E[6<C—H) A+ Ryp) — 1] o, (29)

t

where ¢, is aggregate consumption at time #, R, is the return on asset
ifrom ¢t — 1 to ¢, B is the rate of time preference parameter, and ¥ is
the constant relative risk-aversion parameter.

There is a large literature concerned with tests of this model [see,
e.g., Hansen and Singleton (1982)]. Define &, , .= [B(c,4./c) ™" (1 +
R,.) — 1], for all assets i = 1,..., N. Exploring the properties of
2¢_, €.+ . has potential benefits over existing tests that use single-period
returns because it is sometimes possible to obtain more information
about a stochastic process from its multiperiod properties.

Using results in Section 2, it is possible to provide tests for serial
correlation in the multiperiod forecast errors across different assets.
For example, consider two multivariate forecast errors €,,,, and €.,
from equilibrium condition (29). Using the mean restrictions (i.e.,
the mean forecast error is zero) and the j-period serial correlation
restrictions for the two assets, it is possible to derive the asymptotic
variance-covariance matrix for the serial correlation estimators 8.(p)
and B,() of the forecast errors €, and €, respectively:

(&(f))
var A
B,
(2=)
1 —_—
_ 272+ 1 7.0,

3] M ’ 1
0,0,
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[cov(j, n)]2 cov(j, n)cov(j, q)
+ (var('y)) o, 0502
J? cov(j, n)cov(j, q) cov(j, q) i ’
005 o

(30)

where

Jj 7
. - _Crrs -
cov(j, m) = cov <z tdn S ¥ )

s=1 t+s—1 s=
ql+s—j) ’
1

0, = covariance between €, and €,

=

J

~ Ct+s
2 Egrsln—,
C

s=1 t+s—1 s

M-~

cov(j, @) = Cov<

a2 = variance of €, Vi,

Note that the variance—covariance matrix of the ﬁAi( 7)’s can be writ-
ten as the sum of two terms. The first term reflects the variance-
covariance matrix of the estimators (8,(;) given above. The second
term reflects the portion of the standard errors caused by estimation
of the parameter y. Since the diagonal elements of this term are
positive, the standard errors of 8,(;) and ﬂ (/) will in general be
higher. Even if v cannot be measured precisely, the econometrician
can potentially reduce this measurement problem by choosing assets
to minimize cov(j, 9) (i = n, g). This example serves to demonstrate
the procedure’s ability to tackle fairly complex models.

5. Conclusion

Financial models imply restrictions on the moments of economic
variables. These restrictions can be tested directly using Hansen’s
(1982) GMM approach. This approach has the intuitively appealing
property that only minimal distributional assumptions outside the
model need to be made. While the application of GMM to asset pricing
models is not new, the techniques introduced in this article are useful
in tackling models that impose joint serial dependence restrictions;
for example, the market microstructure models and multiyear auto-
correlations discussed earlier. In addition, there are several technical
contributions in this article.

(i) With few additional assumptions, we are able to derive simple
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expressions for resulting test statistics and estimators. Among other
benefits, this results in less sampling variation, leading to better size
properties.

(ii) Using the approximate slope of Geweke (1981), we make
asymptotic power comparisons between different statistics. Specifi-
cally, we explore the power advantages of using multiperiod data.

(iii) The benefit to overlapping observations is explicitly quantified.

Appendix A

Under the model example in Section 1, the demeaned terms of the
moment conditions of Equation (7) can be written as

€:
w=\ @ e )* — jm, |. (A1)
(02 re et—i—l)z — km,

Now denote R,(I) = E[w,w)]. Hansen (1982) shows that the vari-
ance—covariance matrix of the moment conditions will in general be
given by

So = § R,(D). (A2)

|=—o00

For the model looked at in this article, S, takes an especially easy
form since the autocovariance function is nonzero only up to the
highest overlap. That is,

S, = 2 R, (D). (A3)

Using the assumptions (i)-(v) given in Section 1, it is possible to
calculate E[w,w’). Specifically, for a given /, each element has the
following form:

0, if I+ 0,
E[ézet—l] = {mZy lf l=0,

()=}

={0, if 1> 0,

m,  ifi<o, K= Jorks
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[ /x—1 2 [ /x—1 2 7
E €] — km; E €—iy] — KM,
L\i=0 L \i=0 i

&= D=3k — DImM3 + kmy) VI<«k, k=jork

. 5 - et ) -
<E et—i) - ]mz:l (2 et—i—l) — km, )
L \i=o0 [ \i=0 R

= [2(max(j — 4 0))* — 3max(j — [ 0)]m}

o]
P

+ max(j — 1 0)m, Vi< kj=<k

A(Fe) -]z o) )

= [2(min(j, & — £ 0))? — 3min(yj, & — 1)]m}
+ min(j, k — 1) m; Viskj<k

Substituting these covariances into (A3) above and performing the
summation yields the desired result in Equation (10).

Appendix B

From Hansen (1982), we know that the asymptotic variance of the
estimators in moment condition (20) is given by

(Do) So (D),

where
agr
D,=E ,
° [a(a, 5)]
+o0
So= 2, E[wow?,
l=—oc0
2"{':1 €t+,-_1 - Q; _ 61‘ (E];-'=1 gt—j+i—l)
[Eji=l €rvimy — O — :Bj(zji=1 et—j+i—l)][2{'=1 gt—j+i—l]
wl = M

2 € — oy — B (T € i)
[2?=1 €rimr— oy — B (Ch, et—j+t—l)]zlfe=1 5z—j+i—1]

Under the Hansen and Hodrick (1980) assumptions, S, takes an
especially easy form since the autocovariance function is nonnegative
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only up to the highest overlap. That is,

Se= 2 Elww’, (B1)

I=—k*+1

where k* is the largest holding period.

Without loss of generality, consider two different holding periods,
jand k. For a given /, denote the two moment conditions related to
period j as w,,and w,,, respectively. Using the assumptions, it is
possible to then calculate for a given /each element of S, analytically.
Specifically, these elements take the form

_JG=Dm, ifj>1>0,
ﬂwm%d_{04-0mb if —j< 1= 0;

w — Dm,m,, ifj>1>0,
L2 ](]+l)mlm2, if—j<I1=<0;

Elw. w.]= (G—D*mi + j2(j— Dmim,,  ifj>1>0,
[@ao®ud =G+ Deme + 2+ Dmzm,,  if —j < 1= 0;

_ Jmin(k — j)m,, if k> 1> 0,

Efwsotvs] {max(j YL 0)m, f—k<I<O0;

_ Jmin(k — L, j)km,m, if k> 1> 0,
Elty0tus] {max(j+ L, 0 kmym,,  if —k < 1= 0;
_ Jmin(k — [ j)jm,m, ife>1>0,
E[w;0ts 1] {max(j + 1, 0)jm,m,, if—k<I=0;
min(j, & — Dmax(j — I, 0) m?

Elw. .. ] = + min(j, & — ) jekmim,, if e>1>0,
[@isoWie] min(j, & + )max(j + , 0) m?
+ max(j + [, 0)jemim,, if—k<1=0;

Substituting these covariances and variances into (B1) above and
performing the summation yields the following result:

jim, jPmym, Jkm, Jkim,m,

S = JPm,m, %[j(ij + 1)mg] + jim,m? jemym,  (s(j k) + jHYmE + jrk*m,m};

° Jem,m, jiem,m, k2m, k3m,m, :
ik2m,m,  (s(j, k) + jH)mi + j2k*m,m? Bm,m, i[Ie(ZIe2 + 1)mi + kim,m?

(B2)

Under the aforementioned assumptions, the analytical derivative
matrix can also be calculated:
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-1 —jm, 0 0
= —Jjm, Jjimi + jm, 0 0
Dy 0 0 1 km, (B3)
0 0 km, k2m? + km,

Since the above matrices hold for all jand &, it is possible to set up
2m X 2m matrices S, and D,, where m is the number of holding
period returns. Using (B2) and (B3), the matrix operations on
Dg'S,D; ' can be performed to get the desired result given in Equation

(21).
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