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Temporary Components of Stock Prices:

A Skeptic’s View

Matthew Richardson

Finance Department, Wharton School, University of Pennsylvania, Philadelphia, PA 19104

Recent empirical work has uncovered U-shaped patterns of large magnitude in the serial-
correlation estimates of muitiyear stock returns. The current literature in finance has taken this
evidence to mean that there exists a temporary component of stock prices. This article provides
an alternative explanation regarding these findings. Specifically, we show that the patterns in
serial-correlation estimates and their magnitude observed in previous studies should be expected

under the null hypothesis of serial independence.
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Researchers have reported seemingly striking evi-
dence of stock-return predictability over long-return
horizons, which has led many to question the descriptive
power of the random-walk hypothesis. Much of this
evidence regarding the predictability of long-term re-
turns has been presented in terms of correlation or vari-
ance patterns over the different return horizons. Al-
though the discussion we give herein applies to many
of the works in the recent literature, we consider the
heavily cited article by Fama and French (1988a) as a
representative sample of this evidence. (In addition, see
the original work by Stambaugh [1986] and later studies
in finance and macroeconomics by Campbell and Mankiw
[1987], Huizinga [1987], Poterba and Summers [1988],
Lo and Mackinlay [1988], and Cochrane [1988], among
others.)

For example, Fama and French (1988a) reported
multiperiod autocorrelations for a variety of industry,
size, and index portfolios. As an illustration, consider
the New York Stock Exchange equal-weighted stock
index of returns. The serial correlation pattern for this
portfolio is —5%, —22%, —32%, —36%, —34%,
—13%, 8%, and 22% for the 1-6-, 8-, and 10-year
returns. The magnitude of the largest of these corre-
lations (i.e., 36%) is considerably higher than previ-
ously believed, suggesting greater predictability in stock
returns. Furthermore, the U-shaped pattern in the coef-
ficient estimates suggests rejecting the random-walk
model in favor of a model that incorporates a large
mean-reverting component as well as a permanent com-
ponent to stock prices.

The magnitude and patterns in these serial-correlation
estimates, however, are the type of results we should
expect to see generated from a random-walk model.
This is due to the combination of two effects. First, over
the vector of multiperiod autocorrelation estimates, some
of the estimates will differ from their random-walk ex-
pected value of 0. Order-statistic theory suggests that
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these differences can be quite large. Second, autocor-
relations of similar holding-period returns are highly
correlated. These autocorrelations will therefore pick
up similar variation, irrespective of whether it is real or
spurious. These effects induce U-shaped or humped-
shape patterns around the largest estimates—the same
pattern found in actual stock-return data. Of particular
interest, this alternative explanation for the U-shaped
pattern in the observed serial correlation estimates re-
lies on the random walk being the true model.

This article is presented as follows. Section 1 gives
our alternative interpretation of the much-cited long-
horizon serial correlation in stock returns. Section 2,
investigates further the intertemporal behavior of long-
horizon returns by examining some implications of the
joint properties of multiperiod autocorrelations. Sec-
tion 3 concludes.

1. A SKEPTIC’S VIEW

1.1 On the Existing Evidence

Fama and French (1988a) collected monthly data on
continuously compounded real stock returns from 1926—
1985 and estimated 1, 2, . . . , 6, 8- and 10-year auto-
correlations (denote E’j, where j is the period length).
Table 1 summarizes these bias-adjusted autocorrelation
estimates. At first glance, the results appear quite strik-
ing. In particular, Bj ranges from —25% to ~45% at
j = 36-60 months. This is considerably different from
the random walk’s implied average value of B, equal to
0. (For similar results in a related context, see also
Poterba and Summers [1988].)

In addition, there is other evidence of predictable
components in stock returns. Lo and MacKinlay (1988)
and Conrad and Kaul (1988, 1989) documented signif-
icant positive autocorrelation at very short horizons;
however, much of the focus on this evidence has con-
centrated on market microstructure effects and seems
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Table 1. Summary of Multiperiod Autocorrelations (1926—1985): Return Horizon (years 1-6, 8, 10)

Portfolio Bz Bzs Bss Bas Beo Br2 Bos Bizo
Food -.01 -.24 -.34 -.36 -.34 -.15 .01 .08
Apparel -.08 -.18 -.20 -.27 -.30 -.21 -21 -27
Drugs -.02 -.14 —.18 -.12 -.13 —.06 -.09 -.22
Retail —.01 -17 -.30 -.32 -.33 -.18 —-.10 -.02
Durables -.02 -.14 -.26 -.33 -.30 -.09 .02 13
Autos —-.05 -.22 -.36 —.42 -.35 -.13 -.04 -.02
Construction -.01 -.13 -.27 -4 —.42 -.21 16 .24
Finance -.01 -.17 —-.26 -.25 -.15 .07 .22 35
Miscellaneous -.02 -.13 -.25 -.35 -.37 -.18 .00 12
Utilities —-.05 -.16 -.27 -.22 -.02 .24 14 10
Transportation -.10 -.20 —-.26 -.33 -.32 —-.18 -.09 .02
Bus. equipment .01 -.22 -.39 -.41 —.36 -.19 .05 13
Chemicals -.04 -.33 —.43 -.38 -.37 -.19 .01 12
Metal prod. .01 -.20 -.38 -.49 -.52 -.37 -.16 -.05
Metal ind. -.08 -.27 -.36 -.36 -.35 -.17 .18 .28
Mining -.09 -.29 -.37 —.44 —.48 -.28 .02 .08
Qil -.02 -.23 -.29 -.42 —.40 -.20 A7 .27
Size decile 1 .01 -.13 -.23 -.36 -.32 —-.05 35 .56
Size decile 2 .01 -.12 -.25 -.41 - .45 —-.26 —-.02 .09
Size decile 3 -.04 -.16 -.27 -.35 -.35 -.19 -.08 -.04
Size decile 4 -.02 -.19 -.29 -.38 -.39 -.23 —-.08 .05
Size decile 5 —.06 -.23 -.29 -.32 -.33 -.16 —-.01 13
Size decile 6 -.05 -.20 -.31 -.31 —-.28 -.10 .04 13
Size decile 7 -.07 -.27 -.35 -.28 -.22 -.02 12 .16
Size decile 8 -.05 -.23 -.30 -.20 -.13 .06 15 15
Size decile 9 —-.04 -.21 -.27 -.13 -.01 .21 .30 .25
Size decile 10 —-.06 -.23 -.27 -.10 .05 25 .34 25
Equal wt. -.05 -.22 -.32 -.36 -.34 -.13 .08 22
Value wt. -.03 -.20 -.25 -.09 .06 .25 .31 21

NOTE: Table 1 reports multiperiod autocorrelation estimates over (1-6, 8, and 10)-year horizons. Denote these estimates ﬁ,-, where
j equals the length of the horizon in months. These estimates are taken from Fama and French (1988a), tables 1 and 2. In particular,
the estimates involve the regression of j-period returns on past j-period returns using overlapping data. The estimates are adjusted to

reflect bias in small samples.

to have little implication for long-horizon returns. In
extensions to multivariate frameworks, Gibbons and
Ferson (1985), Keim and Stambaugh (1986), and Fama
and French (1988b), among others, found significant
evidence of time-varying expected returns over differ-
ent horizons. Based on this evidence, the implications
for whether a temporary component exists and for
whether stock returns are negatively correlated at long
horizons, however, is less clear (see Hodrick 1992).

With respect to the long-horizon autocorrelations,
recent work questions the reliability of the individual
point estimates (e.g., see Kim, Nelson, and Startz 1991;
Richardson and Stock 1989). The overall conclusion
from this work is that long-horizon ¢ statistics tend to
overstate the degree of mean-reversion in the data. The
analysis in these works, however, provides only a cur-
sory treatment of the joint behavior of the multiperiod
autocorrelations. Prior to the long-horizon autocorre-
lation evidence, the prevailing view in finance was that
long-term stock returns were uncorrelated. Under this
model, what magnitude and pattern in the serial cor-
relation estimates should we expect to find across the
different multiperiods?

1.2 Magnitude of the Estimates

To reexamine the long-horizon autocorrelation evi-
dence, we investigate the implied behavior of the au-

tocorrelation estimates via Monte Carlo simulation.
Specifically, we look at two types of simulations, in
which we draw 720 observations from either an N(u,
o?) distribution (in which the u and o match the sample
estimates of the index returns) or from the sample dis-
tributions of actual portfolio returns with replacement.
We then calculate the multiperiod autocorrelation for
periods of length 12,24, . . ., 72, 96 and 120. To co-
incide with the existing literature, these estimates are
then adjusted for small-sample bias. This procedure is
repeated 5,000 times for each simulation. Note that the
results were robust to the two simulation methods.
From the theory of order statistics, we should expect
that, across the different periods j, some of the Bj be
different from their individual expected value of 0. In
Table 2, we report the Monte Carlo estimate of the
empirical distribution of B., where j* is the period in
which the largest absolute deviation from 0 occurs (j €
{12, 24, . . ., 72, 96, 120}). As intuition suggests, the
distribution of B,-* is considerably removed from the
distribution we would expect from the individual B;s.
Moreover, over the 5,000 replications, the average of
the absolute value of Ej. is .353, which interestingly
enough is in the middle of the range of the actual mul-
tiperiod autocorrelations. As an additional measure,
the last two columns of Table 4, Section 2.1.1, provide
IB,-. and their corresponding Monte Carlo p values from
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Table 2. Empirical Distribution of Maximum Multiperiod Autocorrelations
Across Return Horizons: [1-6, 8, 10] Years (720 obs.)

Empirical CDF values
Statistic Mean .05 .25 415 .50 .585 .75 .95
ﬁ[ —-.022 -.531 —.340 -.234 -.171 170 .305 .572
18 .353 147 .238 244 323 355 432 636
B-(* € {3, 4, 5)) 301 —-.4703 —-.2985 —.1983 .0858 .1846 .2747 4396

NOTE: Table 2 reports the empirical distribution of the j-period serial correlation estimators’ largest absolute deviation from 0 across
horizonsj € {12, 24, ..., 72, 96, 120}. Denote this statistic EJ,-, where j* is the period in which the largest deviation occurs. The distribution
is computed using 5,000 replications of data generated from an iid normally distributed random variable (in which the mean and variance
are chosen to match the equal-weighted stock-return index). The empirical distributions of [[i,-l and ﬁ,- (when j* € {36, 48, 60}), are also
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provided.

observed data on the various portfolios. Most of the
statistics are insignificant; for example, over the 29 port-
folios, the average p value is .41.

With respect to the actual estimated multiperiod au-
tocorrelations, however, most of the largest deviations
occur in the 36—60-months range. For the simulated
data, Table 3 shows that [:I]-* occurs in the 3—5-year range
in 26.2% of the 5,000 replications. The estimate of the
empirical distribution of B;- (when j* € {36, 48, 60}) is
also given in Table 2. In the relevant negative range of
the empirical distribution, the 41% and 5% p values
are —.20 and — .47, respectively. It is interesting to
note that in the actual data only a few of the serial
correlation estimates in the 3—5-year range lie outside
this region (see Table 1). Therefore, even when we
condition ex post on j* € {36, 48, 60}, at a 10% level
two-sided test, there is no evidence against the random-
walk model. Moreover, the average average absolute
value of 3, (when J* € {36, 48, 60}) is approximately
.301, which again is in the appropriate range of actual
multiperiod autocorrelation values.

1.3 U-Shaped Pattern in the Estimates

Previously, we provided simulation evidence that
suggests that departures from the random-walk model
are similar in magnitude to those of the observed data.
Specifically, on average, the absolute value of [3, will
equal .35. Although this may explain the magnitude of
the coefficient estimates, it does not provide an expla-
nation for the well-documented U-shaped pattern in the
autocorrelation estimates. Conditional on B,-. , however,
what pattern should we expect to emerge?

Two counteracting effects provide a possible answer
to this question. Because the multiperiod autocorrela-

tion estimators have many sample autocovariances in
common, thAe first:effectAforcesA surrounding estimators
of B« (i.e., Bj—1, Bj+1, Bj+—2, Bj+2, - - - , €tc.) to have
similar point estimates. For example, under the random-
walk null, it is possible to show that the asymptotic
correlation between B, and B, is .92 (see Sec. 2). This
implies that over 80% of the variation in B, can be
explained by B4;. If B4s = B, , then B¢, would, therefore,
pick up much of the same spurious serial correlation.
On the other hand, the adjusted estimator Bj is on
average approximately 0. Therefore, a second effect
pushes the estimator B,» toward a point estimate of 0.
Intuitively, the effect that dominates depends on how
close j is to j*. For values of j close to j*, [3, and [3, are
essentially the same estimator. Conditional on [3, , the
expectation of B] will be slightly smaller than B, For
values of j far from j*, [3, and B, have very little in
common. In this case, the expectation of B} will be close
to its unconditional average of 0. These two effects then
combine to create, on average, either U-shaped or
humped-shape patterns in the estimates around B,
The preceding results are good news for financial
economists with “random-walk priors.” In particular, we
have provided a natural interpretation of the U-shaped
pattern in serial correlation estimators that relies on the
random-walk model being the true model of stock prices.
Not that there will, on average, always be “‘seemingly”
large deviations from the random-walk model with
smooth patterns in the serial correlation estimates.
Without strong a priori suspicions regarding alternative
hypotheses, therefore, the current literature’s interpre-
tation of the serial correlation estimates is suspect. In
contrast to the mean-reversion hypothesis, under the
serial-independence assumption there is no reason to

Table 3. Frequency Distribution of Maximum Multiperiod Autocorrelations
Across Return Horizons: [1-6, 8, 10] years (720 obs.)

Yr. 1 Yr. 2 Yr. 3

Yr. 5 Yr. 6 Yr. 8 Yr. 10

Percentage 3% 712%  8.86% 8.42%

8.76% 13.46% 17.32%  33.06%

NOTE: Table 3 reports the frequency distribution of the j-period serial correlation estimators' largest absolute deviation from 0 across
horizons j € {12, 24, .. ., 72, 96, 120}. The distribution is computed using 5,000 replications of data generated from an iid normally
distributed random variable (in which the mean and variance are chosen to match the equal-weighted stock-return index).
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expect U-shaped patterns over humped-shaped patterns
in the serial-correlation estimates. If stock returns are
independent, then we should expect no relation be-
tween serial-correlation patterns in different samples.
As a matter of fact, this seems to be the case (see Kim
et al. [1991] for a detailed analysis of this point). For
example, when comparing the 1926-1955 and 1956-
1985 period, the serial-correlation pattern changes from
U-shaped to humped-shape for all of the 10 size-sorted
portfolios. Consider a representative portfolio, the sixth
size decile portfolio: Its serial correlation patterns are
[-.01%, —.15%, —.38%, —40%, —35%, .02%] and
[-.07%, —.11%, .11%, .13%, —.07%, —.33%] for
1-6-year holding-period returns over the 1926-1955
and 1956-1985 periods. Of course, these conclusions
are especially subject to small-sample considerations.
For example, at the 6-year horizon, we only have five
overlapping observations. Nevertheless, the results are
indicative of random-walk-like behavior in stock prices.

2. JOINT PROPERTIES OF RETURNS

Most applications of the serial-correlation evidence
involve interpreting the autocorrelation estimates sep-
arately. (For some exceptions, see Daniels and Torous
1991; McQueen 1992; Kim et al. 1991; Richardson 1989;
Richardson and Stock 1989).

Under the null hypothesis that stock returns are
uncorrelated and under some assumptions restricting
conditional heteroscedasticity, Richardson and Smith
(1991) derived the variance—covariance matrix of serial-
correlation estimators (such as multiperiod autocorre-
lations and variance ratios). With respect to the multi-
period autocorrelation estimators B,-, the typical ele-
ments of the asymptotic variance—covariance matrix
between any two estimators are

22+ 1 s(j, k) + j?
B\ _ 3j Jk
Var(ﬁl) “\sGo+2 2x+1 |
ik 3k

where
G, K =23, 16 - DminG, k = DY,

In terms of a joint test of the individual ¢ statistics, a
natural ex ante statistic in finance has been the Wald
statistic for a joint test of B; = 0 for all j:

JiB) = (VTH; . .. VTiBY)

()] ()
x | var| : SN Bl ¢ ¢V
B VTiBr

where T; is the number of observations used in esti-
mating ;.

Richardson and Stock (1989) provided an alternative
interpretation of this statistic under a different asymp-

totic theory (i.e., one in which J/T — 6, 0 < § < 1).
In their framework, J;’s distribution is not x* but in-
stead has a representation in terms of a functional of
Brownian motion. Under weak assumptions (including
various forms of heteroscedasticity), its representation
does not depend on any unknown parameters (i.e., only
8 is important). Hence its asymptotic distribution can
be readily approximated via Monte Carlo simulation.
In terms of interpreting the results in this article, the
Richardson—Stock theory provides an asymptotic jus-
tification for using the Monte Carlo p values given in
Tables 2—7. As an aside, results of Richardson and Stock
(1989) suggest that this alternative asymptotic theory
provides a better approximation in small samples.

2.1 Joint Tests: Empirical Results

2.1.1. Multiperiod Autocorrelations. We calculate
the J{(B) statistic for the 17 industry, 10 size, and 2
index portfolios looked at by Fama and French (1988a).
A description of the data was provided in that article.
In brief, they looked at autocorrelation patterns in 1-6-,
8-, and 10-year holding period returns for various port-
folios from 1926-1985. To coincide with the simulation,
we use the bias adjusted slopes given in Table 1.

The test results are provided in Table 4. The zero
autocorrelation model can be rejected for only one port-
folio (i.e., utilities) at the 1% table value. Four other
portfolios approximate the 5% table value. Given the
divergence between ﬁj’s asymptotic and small-sample
distribution reported in the literature, one might expect
a similar divergence in J,{8)’s small-sample distribution
from a x3. To extend the analysis to the stock returns’
sample distributions, we calculate Monte Carlo p values
for each of the 29 portfolios from its own empirical
distribution of 5,000 repetitions.

These results are given in the second column of Table
4. Only one portfolio’s serial-correlation pattern is sig-
nificant at the 10% empirical p value—specifically, util-
ities has a J{B) statistic of 26.98, which represents the
3.44% empirical level. It is interesting to note that util-
ities is one of the least significant portfolios in terms of
t statistics. Ultilities’ serial correlation pattern over the
1-6-, 8-, and 10-year horizonsis —5%, —16%, —27%,
—22%, —2%, 24%, 14%, and 10%. Consider the
asymptotic correlation between the 5-, 6-, and 8-year
serial-correlation estimators:

Bso 1.00 .95 .73
corr| B ) = | 95 1.00 .88 }.
Bos 73 .88 1.00

Conditional on B¢ = —.02, Bes = .14, and the pre-
ceding correlation matrix, we would expect B, to lie
between —2% and 14% under the random-walk null.
Therefore, even though these estimates are small in
magnitude, 3,, = .24 in the joint setting imposes sharp
evidence against the null. (Note that utilities’ significant
serial correlation pattern may be due to sampling error;
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Table 4. Joint Test Statistics for Portfolio Returns (1926—1985): Return Horizon (years 1-6, 8, 10)

. % Empirical Heteroscedasticity X3 . Empirical
Portfolio JHB) p value p value JB) p value max; B p value
Food 12.03 .1500 .2664 12.96 .1133 .36 41
Apparel 7.35 4996 5764 7.47 4872 .30 .60
Drugs 7.26 .5099 .6008 9.10 .3338 22 84
Retail 10.76 2155 .3420 11.85 .1582 .33 .50
Durables 15.41 .0517 .2664 19.09 0144 .33 .50
Autos 14.72 .0647 .1618 13.81 .0868 42 .25
Construction 12.76 .1204 .1804 13.22 .1045 42 .26
Finance 11.03 .2002 .2522 13.47 .0966 35 44
Miscellaneous 12.30 .1383 .2580 11.76 .1624 37 .38
Utilities 26.98 .0007 .0344 28.52 .0004 27 .69
Transportation 9.27 .3203 .4092 10.74 2170 .33 .50
Bus. Equipment 8.29 .4061 .4958 8.34 4005 A1 .28
Chemicals 15.54 .0494 .1590 15.54 .0494 .43 .23
Metal prod. 10.28 .2461 .3516 8.47 .3890 .52 12
Metal ind. 13.48 .0964 2132 13.52 .0951 .36 41
Mining 17.79 .0228 1104 19.31 .0133 48 .16
Oil 12.51 .1295 .2482 13.29 1022 42 .26
Size decile 1 15.48 .0504 .1652 11.93 .1543 .56 .09
Size decile 2 13.06 1097 .2200 10.84 .2108 45 .20
Size decile 3 9.15 .3295 4282 9.55 .2980 .35 44
Size decile 4 10.47 .2336 .3364 10.74 .2166 .39 .33
Size decile 5 11.85 .1581 .2770 11.68 .1663 .33 .50
Size decile 6 9.78 .2809 .3968 9.93 .2700 31 .56
Size decile 7 12.35 .1363 .2624 12.14 .1452 .35 A5
Size decile 8 11.79 .1609 .2878 14.39 0722 .30 .60
Size decile 9 12.56 .1280 .2562 11.87 1571 .30 .60
Size decile 10 10.14 .2551 3716 10.93 .2059 .34 47
Eq. wt. 12.52 .1295 .2578 NA NA .36 .41
Val wt. 8.96 .3454 .4604 NA NA .36 41
Average 12.27 .1910 .3045 12.76 1748 .31 42

NOTE: Table 4 reports Wald tests [denote Jr{8)] for whether the serial-correlation estimates of 1-6-, 8-, and 10-year returns on 29 different portfolios (i.e., 2 index, 10 size, and 17 industry)
are each jointly significantly different from 0. Columns 5 and 6 report heteroscedasticity-consistent Jr{8) statisics. Columns 7 and 8 provide the max; Iﬁ,l statistic taken from the actual data
across the 1-6-, 8-, and 10-year horizons for each portfolio. The tests are performed on overlapping monthly returns for the period 1926-1985. The empirical p value is the p value for the
statistic generated from each portfolio’s empirical distribution under the null hypothesis. This distribution was computed from 5,000 replications using data independently drawn with replacement

from the sample distribution of each portfolio’s returns.

i.e., we have reported individual results for 29 portfolios
and found only one deviation from the random-walk
model. This issue is addressed in Sec. 2.2.)

2.1.2. Additional Holding Periods. To coincide with
an earlier version of Fama and French (1987), we report
autocorrelation patterns for additional holding periods
(including the 7- and 9-year horizons). The results are
provided in Table 5 and now, somewhat surprisingly,
reject the random-walk model. For example, as a rep-
resentative portfolio, consider the sixth size decile port-
folio. Its serial correlation pattern over the 1-10-year
horizons is ~5%, —21%, —30%, —30%, —28%,
—10%, 7%, 3%, 11%, and 12%. Note that there is a
spike in the autocorrelation estimate at the 7-year ho-
rizon (i.e., 7%), which is not consistent with the cor-
relation matrix between the 7-year autocorrelation es-
timator and its surrounding estimators. .Of particular
interest, column 5 of Table 5 reports the 7-year auto-
correlation estimates across the portfolios, and it is ev-
ident that the 7-year spike is present in all of the port-
folios. The estimates, however, tend to be positive and
small in magnitude; for example, the average across the
portfolios is approximately 8%.

In terms of temporary components of stock prices,

most of the discussion concerning mean reversion has
focused on the “apparent’ large magnitude of the serial
correlation estimates of the 3—5-year returns. Heurist-
ically, if the 3—-5-year holding-period returns are an
important part of this 7-year relation, then one should
expect that on removal of these returns the J,{8) sta-
tistic would significantly decrease in value. Of course,
JA(B) no longer has an asymptotic »? distribution be-
cause we have removed the maximal autocorrelations.
Nevertheless, if anything, we would expect removing
the maximal autocorrelations to sharply reduce the tails
of J{B)’s distribution. In addition, some decrease is
expected because three restrictions from the J{f) sta-
tistic have been removed. The results for the J,{B) sta-
tistic for the size and industry portfolios over years 1—
2 and 6-10 are given in column 6 of Table 5. In almost
all of the cases, the statistic barely drops in value. The
3—5-year return horizon contributes little to the statis-
tic’s value and, therefore, does not seem to play an
important role in the resulting rejection of the random
walk.

2.1.3. Heteroscedasticity in Stock Returns. There is
growing evidence that stock returns are heteroscedastic.
For example, Bollerslev. Engle, and Woolridge (1988),
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Table 5. Joint Test Statistics for Portfolio Returns (1926—1985): Return Horizon (years 1—10)

. X% Empirical R Yrs. 1-2, 6-10 Heteroscedasticity X3
Portfolio JB) p value p value Bsa JHB) JB) p value
Food 41.58 .0000 .0540 .07 38.70 41.84 .0000
Apparel 16.94 .0757 3150 -.13 13.86 18.15 .0525
Drugs 16.63 .0829 .3220 -.01 13.20 20.11 .0282
Retail 38.34 .0000 .0640 -.01 36.01 46.53 .0000
Durables 56.66 .0000 .0236 1 53.91 71.08 .0000
Autos 47.74 .0000 .0378 .05 45.59 50.10 .0000
Construction 36.70 .0001 .0702 .09 34.98 43.25 .0000
Finance 34.58 .0001 .0800 .23 32.95 45.71 .0000
Miscellaneous 29.42 .0011 1144 .02 26.04 32.87 .0003
Utilities 46.70 .0000 .0404 .30 36.62 51.47 .0000
Transportation 32.71 .0003 .0908 .04 30.63 37.18 .0001
Bus. equipment 47.26 .0000 .0390 .03 46.32 64.76 .0000
Chemicals 55.61 .0000 .0250 .04 51.64 62.03 .0000
Metal prod. 49.43 .0000 .0350 a7 48.83 60.63 .0000
Metal ind. 33.73 .0002 .0854 11 29.47 37.45 .0000
Mining 44.63 .0000 .0448 .01 37.78 47.12 .0000
Qil 26.83 .0028 .1356 .08 21.09 28.98 .0018
Size decile 1 30.14 .0009 .1098 .21 26.20 33.40 .0002
Size decile 2 32.51 .0005 .0910 .03 28.77 32.42 .0003
Size decile 3 33.59 .0003 .0872 .01 31.37 38.15 .0000
Size decile 4 33.68 .0003 .0860 .04 31.32 37.33 .0000
Size decile 5 43.92 .0000 .0472 .04 41.72 48.80 .0000
Size decile 6 33.55 .0004 .0862 .07 32.72 38.57 .0000
Size decile 7 54.52 .0000 .0260 19 52.52 60.83 .0000
Size decile 8 47.00 .0000 .0400 .24 44.30 52.09 .0000
Size decile 9 41.32 .0000 .0544 .37 40.22 48.93 .0000
Size decile 10 46.42 .0000 .0414 42 43.97 57.89 .0000
Average 38.96 .0061 .0832 .08 35.95 44.73 .0031

NOTE: Table 5 reports Wald tests [denote Jr(8)] for whether the serial correlation estimates of 1—10-year returns on 27 different portfolios (i.e., 10 size and 17 industry) are jointly _signiﬁcamly
different from 0. The test is performed on overlapping monthly returns for the period 1926—1985. In addition, golumn 5 reports the 7-year multiperiod autocorrelation estimate, Bg4. Column
6 calculates J7(B) for 1—2- and 6—10-year horizons. Columns 7 and 8 report heteroscedasticity-consistent Jr(B) statistics for 1-10-year horizons.

French, Schwert, and Stambaugh (1987), Schwert (1989),
and others found that that stock-return variances tend
to be positively autocorrelated. It is, therefore, of some
interest to study heteroscedasticity’s impact on the em-
pirical results in Sections 2.2.1 and 2.2.2. In particular,
under mild assumptions, it is possible to show that the
typical elements of the asymptotic heteroscedasticity-
consistent variance—covariance matrix of the 8’s are

<min(i, % - i)>2 cov(R?, R2-))

™M

ﬁj i=1 ] 0"}?
Var(l?k) ’ 5 (mi(i, k)) cov(R?, R2.)
i=1 jk 0'14g
5 (m,-(f, k)) cov(R?, R_)
i=1 fk o }‘q
2"2-1 (min(i, 2% - i))2 cov(R2, R2) |’
i=1 k ag }'q

where m,(j, k) = min[i, max(2j — i, 0)] min(i, 2k — i).

For each portfolio, we recalculate the J{B) statistic
using its heteroscedasticity-consistent variance. The re-
sults are given in columns 4 and 5 of Table 4 and col-
umns 7 and 8 of Table 5. The statistic’s value barely
changes for both [1-6, 8, 10]- and [1-10]-year returns.
Note that the driving force behind the evidence in Table
3is that the 7-year spike in the autocorrelation estimates
is consistent with the correlation matrix between 384

and surrounding f’s. Since heteroscedasticity has an
impact on both the covariance and variance of these
long-horizon s, it washes out—leaving the correlation
matrix intact. Hence heteroscedasticity does not explain
this long-horizon evidence.

As an alternative method, we can also evaluate the
results in Tables 4 and 5 using the Richardson-Stock
asymptotic theory. Note that in their framework het-
eroscedasticity does not affect the asymptotic distri-
bution. Therefore, the Monte Carlo empirical p values
in Tables 4 and 5 still represent the appropriate asymp-
totic p values under their alternative theory. Hence, by
appealing to the Richardson—Stock theory, heterosce-
dasticity still does not explain the evidence.

2.2 Multivariate Test

One of the striking features of the multiperiod au-
tocorrelation evidence is that it is pervasive across the
different portfolios. Although intuition might suggest
that these portfolios, which exhibit similar serial-
correlation behavior, provide strong evidence against
the random walk, we must be careful to interpret the
estimates in the proper context. Under the random-
walk model, we should expect to find that highly cor-
related portfolios have similar multiperiod autocorre-
lation patterns.

In Section 2.1, we reported J{f) statistics for each
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Table 6. Multivariate Joint Test Statistics: Empirical Distribution of J7"(8)

) Empirical CDF values
J7(B)
assets [yrs] Mean .05 .10 .30 .50 .70 .90 .95
Size [1-6, 8, 10] 123.5 52.5 60.1 81.0 1033 1349 2077 263.2
Size [1-10] 217.3 67.1 79.7 1195 1648 2326 4014  537.6
Industry [1-6, 8, 10]  209.2 96.5 1093 1474 1847 2322 3365 406.9
Industry [1-10] 352.9 126.5 1462 2145 2882 3904 6106 7614

NOTE: Table 6 reports the Monte Carlo empirical distribution of Wald statistics [denote JF¥(8)] for whether the multiyear serial-correlation
estimates across the size and industry portfolio returns (1926—1985) are jointly significantly different from 0. The simulations are performed
using actual return data on 10 size and 17 industry portfolios across [1-6, 8—10] and [1-10] year horizon. The small-sample distribution
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of JPY(B) is generated from 5,000 replications of data independently drawn from the joint sample distribution of returns.

of the 29 different portfolios. In general, the returns on
these portfolios will be correlated; therefore, for testing
the hypothesis that all of the portfolio’s stock prices
follow a random walk, the test statistic should incor-
porate the correlation across portfolios. Under analo-
gous assumptions to Section 2.1, it is possible to show
that the corresponding Wald statistic in this multivariate
setting is given by

J7(B) = TBMEM @ V(B) I(BY) ~ Xxs:

where BV is a 1 X (S x N) vector of S multiperiod
autocorrelations across the N assets, 3V is the N X N
matrix of squared sample correlation coefficients be-
tween the N assets, and V(B) is the S X S variance—
covariance matrix of the autocorrelation estimators. The
Monte Carlo empirical distribution and the test results
for this statistic are given in Tables 6 and 7.

The value of J7*(B) is 115 and 269 for the 10 size and
17 industry portfolios over the 1-6-, 8-, and 10-year
horizons. The corresponding Monte Carlo empirical p
values are only 40.7% and 20.5%, suggesting little evi-
dence against the random-walk model. For example,
consider the 10 size portfolios. The results should not
be particularly surprising given that the correlation across
the size portfolios ranges from .74 to .98. It is evident
from Table 1 that the size portfolios that are most (least)
correlated also have the most (least) similar correlation
patterns. For example, consider the least correlated
portfolios; that is, deciles 1 and 10 have a .74 correla-
tion. Their serial correlation patterns are [.01, —.13,
-.23, —.36, —.32, —.05, .35, .56] and [.06, —.23,
—-.27, —.10, .05, .25, .34, .25]. In contrast, the more
correlated portfolios (i.e., deciles 4-6) have almost

identical magnitudes and patterns of serial correlation
in common. This is what we would expect under the
random-walk null.

When we extend the multivariate results to include
the additional time horizons, the cross-correlation pat-
tern across the assets cannot completely explain the
intertemporal behavior of stock returns in terms of a
random walk. In particular, the value of J7%(8) for the
10 size and 17 industry portfolios is now 421 and 623,
which represents the 8.8% and 9.5% Monte Carlo em-
pirical p values. Hence even though the 7-year auto-
correlation spike is present in all of the portfolios’ serial
correlation patterns, it evidently is not consistent with
the correlation matrix across assets.

2.3 Power Discussion

One possible explanation of the results in Sections 1
and 2 is that the maximum statistics and the Wald sta-
tistics have low power against mean-reversion alter-
natives relative to the power of individual autocorre-
lation statistics. It seems appropriate, therefore, to
compare the power of the joint test statistic J{8) to ¢
statistics for the individual multiperiod autocorrelation
estimator Bj. For example, consider the Fama—French/
Poterba—Summers temporary-component model in which
stock prices have a random-walk and a first-order au-
toregressive (AR) component. To coincide with Poterba—
Summers (1988), assume that the AR(1) parameter
equals .975 and that the stationary component captures
three-fourths of the variance in returns. Using the sim-
ulation method of Section 1, we calculate the power of
the J{B) statistic and (for purposes of comparison) the
5-year autocorrelation estimator. For 5% and 10% size

Table 7. Multivariate Joint Test Statistics: JT*(B) (1926—1985)

10 size 10 size 17 industry 17 industry
[1-6, 8, 10] yrs. [1-10] yrs. [1-6, 8, 10] yrs. [1-10] yrs.
J7(B) 116.2 421.8 269.5 623.3
Empirical .4070 .0880 .2050 .0950
p value

NOTE: Table 7 reports Wald tests [denote JPV(B)] tor whether the multiyear serial-correlation estimates across the size and industry
portfolio returns are jointly significantly different from 0. Specifically, the table provides Wald tests with corresponding empirical p values
across [1-6, 8, 10]- and [1—10]-year horizons for the 10 size and 17 industry portfolios.



206 Journal of Business & Economic Statistics, April 1993

tests, the J{(B) statistic has 9.58% and 19.2% power,
respectively. In contrast, using a two-sided test at these
levels, the individual 5-year serial-correlation esti-
mator, ﬁm, has only 3.9% and 9.9% power. Given these
calculations, there is little to suggest that differences
between the individual and joint tests are due to power.
On the other hand, several recent articles (e.g., Jac-
quier and Nanda 1988; Jegadeesh 1991) used alternative
individual test statistics and reported somewhat stronger
evidence in favor of a temporary component of stock
prices. These results, however, need to be interpreted
in context with the multiperiod autocorrelation esti-
mates. Note that searching for more powerful statistics
against mean reversion can lead to mistaken conclusions
because the alternative theory came from observing the
data. This makes an impact on the size of the ‘“more
powerful” statistics as they are estimated sequentially.
Conditional on observing the U-shaped pattern in the
serial correlation estimates, we would expect to find
that these alternative statistics pick up mean reversion.
Since in this sequential setting only random-walk data
producing U-shaped patterns are relevant, the size of
these alternative statistics will dramatically increase.

3. CONCLUSION

There are several conclusions to be reached from this
article. First, we provide an alternative interpretation
of recent evidence regarding serial dependency in stock
returns. Note that prior to the evidence of large negative
autocorrelations, there had been little discussion in the
finance literature concerning models of stock-price be-
havior that could exhibit the types of patterns observed
in the data. In fact, the long-horizon evidence has re-
ceived much attention precisely because it has changed
the finance profession’s view that long-term stock re-
turns are for the most part unpredictable. This article
shows that the estimates and corresponding serial de-
pendence patterns should be expected from random-
walk data.

Second, we document evidence for joint tests across
different return horizons. Several of the tests cannot
reject the null hypothesis that stock returns follow a
random walk. The following points are of particular
interest:

1. This conclusion appears valid even when we take
account of heteroscedasticity in the data.

2. The results do not seem due to differences in power
between the joint and individual test statistics.

3. Perhaps most surprising, these results hold across
assets; that is, the serial-correlation patterns among the
portfolios are those we might expect from random-walk
data given the particular degree of correlation across
assets.

On a different note, however, we did document some
evidence that stock returns are serially correlated over
the various horizons. This predictability was positive

and small in magnitude. Although this evidence may
also be spurious in small samples, we found that it is
pervasive across different assets and cannot be ex-
plained by the cross-correlation pattern of asset returns.
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