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SIAM REVIEW
Vol. 15, No. 1, January 1973

MATHEMATICS OF SPECULATIVE PRICE*

PAUL A. SAMUELSONY¥
This paper is dedicated to a great mind, L. J. Savage of Yale.

Abstract. A variety of mathematical methods are applied to economists’ analyses of speculative
pricing: general-equilibrium implicit equations akin to solutions for constrained-programming
problems; difference equations perturbed by stochastic disturbances; the absolute Brownian motion of
Bachelier of 1900, which anticipated and went beyond Einstein’s famous 1905 paper in deducing and
analyzing the Fourier partial-differential equations of probability diffusion; the economic relative or
geometric Brownian motion, in which the logarithms of ratios of successive prices are independently
additive in the Wiener—-Gauss manner, adduced to avoid the anomalies of Bachelier’s unlimited
liability, and whose log-normal asymptotes lead to rational pricing functions for warrants and options
which satisfy complicated boundary conditions; elucidation of the senses in which speculators’ anticipa-
tions cause price movements to be fair-game martingales; the theory of portfolio optimization in
terms of maximizing expected total utility of all outcomes, in contrast to mean-variance approxima-
tions, and utilizing dynamic stochastic programming of Bellman—Pontryagin type; a molecular model
of independent profit centers that rationalizes spontaneous buy-and-hold for the securities that exist
to be held ; a model of commodity pricing over time when harvests are a random variable, which does
reproduce many observed patterns in futures markets and which leads to an ergodic probability
distribution. Robert C. Merton provides a mathematical appendix on generalized Wiener processes
in continuous time, making use of It6 formalisms and deducing Black-Scholes warrant-pricing func-
tions dependent only on the certain interest rate and the common stock’s relative variance.

1. Introduction. Great mathematicians have often been important contrib-
utors to applied science. One has only to think of the names of Newton, Gauss,
Euler and Poincaré. Now that the social and managerial sciences have emerged
as professional disciplines, spinoffs from pure mathematics play an increasing
role in their development. John von Neumann made two immortal contributions
to economics. Best known to the outside world is his theory of games; no less
seminal for modern economic analysis was his 1931 input-output model of
dynamic general equilibrium.

The subjects that I shall survey today were not, as far as I can remember, within
the direct range of von Neumann’s research interests. But the methods and
techniques he stressed infiltrate every branch of modern economics.

2. Shadow prices. Is there any other kind of price than “speculative” price?
Uncertainty pervades real life and future prices are never knowable with precision.
An investor is a speculator who has been successful; a speculator is merely an
investor who has lost his money.

* Received by the editors March 9, 1972. The twelfth John von Neumann Lecture delivered at the
Symposium on Mathematical Analysis of Economic Systems sponsored in part by a grant from the
Office of Naval Research at the 1971 Fall Meeting of the Society for Industrial and Applied Mathe-
matics, held at the University of Wisconsin, Madison, Wisconsin, October 11-13, 1971.

Reprinted from Mathematical Topics in Economic Theory and Computation, R. H. Day and S. M.
Robinson, eds., Society for Industrial and Applied Mathematics, Philadelphia, 1972, pp. 1-42.

+ Massachusetts Institute of Technology, Cambridge, Massachusetts 02139. The writing of this
paper was supported in part by a grant from the National Science Foundation.

1



2 PAUL A. SAMUELSON

In the Santa Claus examples of textbooks, however, there are theoretical prices
that play a role in organizing the resource allocation of a competitive society.
The simplest example I can give that still has some richness of texture is the
following ideal case of ‘“homothetic general equilibrium,” as sketched in
Samuelson [93].

There are n goods and services, q,, - - - , 4,, €ach producible out of r factors of
production V;, ---, V, by concave, homogeneous-first-degree production func-
tions. The sum of the amounts of each factor used in the respective n industries is
an assigned positive constant. Finally, the owners of the incomes from the factors
all spend their incomes in the same common proportions at all income levels,
so as to maximize an ordinal utility function: one admissible cardinal indicator
of the utility to be maximized is seen to be concave, homogeneous-first-degree
in its consumption arguments.

Certain regularity conditions being assumed—such as existence of repeated
partial derivative, nonsatiability, strong concavity, and others familiar in the
economics literature—the system is defined by

qj=Qj(V1j7"',V,-j)7 j=1,---,n,
Zl/ijzl/,7 i:l’-..,r’
j=1
(2.1) poQI IV =wy, j=1,--,n, i=1,,7,

u =u[q17"' ’qn],

pj=au/6qj, j=1,...’n.

Here (p;) is the vector of prices of the goods (q;), expressed in “real GNP’ units;
(w;) is the vector of real prices of the factors (V)); V;; is the nonnegative amount
of the ith factor allocated to the jth industry; u is the real GNP, invariant to
redistributions of incomes among individuals because of our strong assumption
of uniform, homothetic tastes.

Then + r + nr + 1 + n “independent” relations of (2.1) do suffice to determine
then + nr + n + r + 1 unknown variables: (q;), (V;;), (p;, ), u, as can be proved
by the nonalgebraic consideration that (2.1) can be shown to be equivalent to an
interior maximum solution to

22 UM, V)= H}jlxu[Q‘(Vu, V), Q' Vi s Vi)l
subject to

Y V=V

j=1

Even if we weaken the assumed regularity conditions, the equality—inequality
version of (2.1) can be shown to have a solution by the Kuhn-Tucker version of (2.2).
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Now the (p;, w;) prices are prices never seen on land or sea outside of economics
libraries. But they do serve the role of Lagrangian multipliers or shadow prices
that, in the absence of competitive markets, might be employed by a central
planning agency in computing ideal socialist pricing, as Pareto [77], Barone (6],
Taylor [108], Lerner [58], Lange [53], Hayek [6], and other economists have
argued. (A socialist might redistribute ownership in the V; and their income-
fruits.)

A question, for theoretical and empirical research and not ideological polemics,
is whether real life markets—the Chicago Board of Trade with its grain futures,
the London Cocoa market, the New York Stock Exchange, and the less-formally
organized markets (as for staple cotton goods), to say nothing of the large
Galbraithian corporations possessed of some measure of unilateral economic
power—do or do not achieve some degree of dynamic approximation to the
idealized “scarcity” or shadow prices. In a well-known passage, Keynes [49]
has regarded speculative markets as mere casinos for transferring wealth between
the lucky and unlucky, the quick and the slow. On the other hand, Holbrook
Working [115]-[118] has produced evidence over a lifetime that futures prices do
vibrate randomly around paths that a technocrat might prescribe as optimal.
(Thus, years of good crop were followed by heavier carryover than were years of
bad, and this before government intervened in agricultural pricing.)

3. Stochastic cob-web cycles. Let me describe a process famous in economics
for more than forty years.! A crop, call it potatoes, is auctioned off for what it
will fetch today according to a demand relation. But the amount supplied in the
next period is a lagged function of today’s price. The demand and supply relations
are respectively

pt=D[qt]’ D' <0,
(3.1) 4. = S(pi-1)s §'>0,

p. = D[S(p,-1)] = P(p,-,), P < 0.

These nonlinear difference equations, subject to initial conditions g, or p,,
generate a determinate solution

q. = Q(t;90),  p, = P(t;po), t>0.

A stationary solution to the dynamic equations is defined by the intersection of
the curves

p* = P(p*),

p* = Dlg*],  q* = S(p*).

(3.2)

! Discovered simultaneously around 1929 by Tinbergen, Ricci, and Henry Schultz, this has already
reached the elementary textbooks as in Samuelson [82, p. 382].
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This is locally unstable if
(33) IP'(p*) = ID'[S(P*IS(p*) < 1

with every-other-period oscillations exploding away from (p*, g*).
If, as could be seen in a diagram, there exists a motion of period 2, we have

repeating terms (-, fo,f1,f0. /1> "= 5 " » 80> 815805815 ")

Pe=/f=fiz2> fis1s
(3.4)
qr = 8 = 812 < &1+1>

with
Jo=P(f),  fi=Pfo)
(3.5) Ji =Dlg],  fo = DIgl,
g1 =S(fo)s 8o = S(fD)-

As Leontief [56] showed, it will suffice for local stability of the periodic motion
that p,,, = P(P(p,)) = P,(p,) be a stable difference equation, with

(3.6) P'(fo)P'(f1) =|D'[g]S'(fo)D'[o)S'(f1)l < 1.

All this is intuitively obvious, but can be verified by a theory of difference
equations with periodic coefficients that parallels the familiar Floquet theory of
differential equations with periodic coefficients. (See Samuelson [97] for discussion
parallel to Coddington and Levinson [15].)

The system (3.1) has a certain vogue in agricultural economics as being related
to a supposed corn-hog cycle. It has the great merits that it solves with a stroke
of the pen how to get, from one set of (p,, q,) data, both an identified demand
function and an identified supply function. As readers of Haavelmo [35] and
F. Fisher [33] know, the specified lag structure permitted older writers such as
H. L. Moore and his pupil Henry Schultz to crack the identification puzzle.

But surely the cob-web cycle is an oversimplification of reality. If prices varied
year after year in a predictable fashion, why shouldn’t farmers and the agricultural
information services recognize this, or at least why wouldn’t commodity spec-
ulators or the board of trade do so? Such recognition would lead to an alteration
of the postulated q, = S(p,_,) relation, perhaps replacing it by

q, = S (price expected at period t)

3.7
G7) = S(I1,).

Thus, in the absence of chance variations in harvests or in tastes, experience with
(3.1) might lead after a time to the self-warranting inference

(33) o= M =0
q. = q* = S(p*).
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Real life can hardly be so simple since there are, at the least, chance variations
in supply harvested. To illustrate one might replace (3.8) by

(39) q: = S(nt) + X,
where X, is an independent random variable
Prob {X, < x} = F(x) for all ¢.

Intuitively, depending upon whether the chance draw of X, has its outcome
knowable late or early in the intention-to-plant stage, one would expect (3.8)’s
stationary equilibrium to be replaced by kind of a Brownian-motion vibration
around equilibrium: when adverse X, is drawn, p, tends to be high. Depending
upon how much one can infer about the unknown probability distribution F(x),
farmers will form different decision rules on how to guess I1,, and hence how to
decide what amounts to plant of each crop.

The next sections will pursue this issue of stochastic variation.

4. Bachelier’s absolute-Brownian motion. It is not easy to get rich in Las Vegas,
at Churchill Downs, or at the local Merrill Lynch office. That price changes
of common stocks and commodity futures fluctuate somewhat randomly, some-
thing like the digits in a table of random numbers or with algebraic sign-patterns
like that of heads and tails in tosses of a coin, has commonly been recognized.
Just as men try to develop systems and hunches to outguess random devices,
so speculators purport to be able to infer from charts certain “technical” patterns
that enable profitable prediction of future price changes.

As against the chartist-technicians, who are in as low repute as ESP investigators
because they usually have holes in their shoes and no favorable records of repro-
ducible worth, there are the “fundamentalists” and economists who think that
the future algebraic rise in the price of wheat will have something to do with
possibly discernible patterns of what is going to happen to the weather in the
plains states, the price of nitrogen fertilizer, the plantings of corn, and the fad for
reducing diets. It came as something of a surprise to these fundamentalists that
Alfred Cowles [17]-[20] and M. G. Kendall [48], along with occasional earlier
writers, found that their computers could hardly tell the difference between
random number series and historical price differences. As Kendall put it, in
discussing over 2,000 weekly price changes in Chicago spot wheat recorded for
years between 1883 and 1914

The series looks like a “‘wandering” one, almost as if once a week the Demon of Chance drew a
random number from a symmetrical population of fixed dispersion and added it to the current
price to determine next week’s price [16, p. 87].

As measured by the absence of significant serial correlation, 18 English
common-stock-price series were found also to look much like random walks.
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The only cases of systematic serial correlation or dependence Kendall found were
in such monthly series as New York spot cotton; but Working [119] and S. S.
Alexander soon independently showed that these weak effects were precisely
what one should expect from random-difference series averaged in the overlapping
monthly fashion of Kendall’s series.

In 1900 a French mathematician, Louis Bachelier, wrote a Sorbonne thesis [5]
on the Theory of Speculation. This was largely lost in the literature, even though
Bachelier does receive occasional citation in standard works on probability.
Twenty years ago a circular letter by L. J. Savage (now, sadly, lost to us),
asking whether economists had any knowledge or interest in a 1914 popular
exposition by Bachelier, led to his being rediscovered. Since the 1900 work
deserves an honored place in the physics of Brownian motion as well as in the
pioneering of stochastic processes, let me say a few words about the Bachelier
theory.?

After some incomplete observations about the difference between objectivist-
frequency notions of probability and subjectivist-personal notions of probability
as entertained by (a) the buyer of a stock, (b) its seller, (c) the necessarily-matched
resultant of buyers’ and sellers’ pressures to form, so to speak, the probability
in the “mass-mind of the market” (my phrase, not Bachelier’s), he in effect posits

(4.1) Prob {Xt+T é xT|X0 = xO} = F(xT — X ;T)

Here x, is the known price of, say General Motors stock, now at t = 0. GM’s
price T periods from now is a random variable, X r, following the indicated
probability distribution. Although Bachelier does not linger sufficiently long over
the fact, evidently t and T are not to be restricted to integral values corresponding
to discrete time periods, but are to be real numbers. Today we would call this a
Wiener Brownian-motion process involving infinitely-divisible independent
increments.

Bachelier gives three or four proofs, or purported proofs, that the resulting
distribution for F must have the normal de Moivre-Laplace-Gauss form. Since
we can go from here to there in two intermediate jumps, he anticipates a form of

2 Since illustrious French geometers almost never die, it is possible that Bachelier still survives in
Paris supplementing his professorial retirement pension by judicious arbitrage in puts and calls. But
my widespread lecturing on him over the last 20 years has not elicited any information on the subject.
How much Poincaré, to whom he dedicates the thesis, contributed to it, I have no knowledge. Finally,
as Bachelier’s cited life works suggest, he seems to have had something of a one-track mind. But what a
track! The rather supercilious references to him, as an unrigorous pioneer in stochastic processes and
stimulator of work in that area by more rigorous mathematicians such as Kolmogorov, hardly does
Bachelier justice. His methods can hold their own in rigor with the best scientific work of his time,
and his fertility was outstanding. Einstein is properly revered for his basic, and independent, discovery
of the theory of Brownian motion 5 years after Bachelier. But years ago when I compared the two texts,
I formed the judgement (which I have not checked back on) that Bachelier’s methods dominated
Einstein’s in every element of the vector. Thus the Einstein-Folker—Planck Fourier equation for diffusion
of probabilities is already in Bachelier, along with subtle uses of the now-standard method of reflected

images.
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the Chapman-Kolmogorov relation and, in effect,® writes

(42) Fix:T, + T;) = f " Flx - u; T)F@u: Ty).

—

He purports to deduce that (4.2) implies

4.3) Flx:t) = F(x — M 1) = N[x - “t],
t

O'\/_ O'\/;

where the well-known Gaussian integral is defined by

(4.4) N[yl = w2 dy,

1 y
— e
\/ﬂf v

Since any member of the Lévy—Pareto stable-additive class satisfies (4.2), and
since all the members of this class that lack finite second moments are non-
Gaussian, such a demonstration is invalid. The recent works of Mandelbrot
[61]-[64] and Fama [25]-[31] suggest that the non-Gaussian Lévy distributions,
with so-called kurtosis « between the 2 of the Gaussian distribution and the 1 of
Cauchy distribution, must be taken seriously in evaluating empirical time series.
Thus, when we supply Bachelier with the regularity conditions, such as finite
second moment, to make his deduction valid, we must do so as a temporary loan
and with some reservations.

Bachelier goes from (4.2) to (4.3) by varied arguments. He verifies (p. 30) the
sufficiency of (4.3) for (4.2) by direct substitution, still leaving open the problem
of necessity. Later (pp. 32-34) he uses the familiar demonstration, by Stirling’s
approximation, of the central limit law for the binomial process. Still later he gives
two arguments, one (p. 39) involving random movements in discrete time on a
discrete lattice of points, and the other (p. 40) reminiscent of Einstein’s approxima-
tion involving zero probabilities outside an infinitesimal range in short-enough
time intervals, to deduce the Bachelier—Einstein Fourier equation

czﬁF(x;t) B *F(x;t)

Ot 0x? 0

4.5)

with well-posed boundary conditions at t = 0.
Bachelier applies this theory to observations in the Paris market of 1894-1898,
with what he considers impressive corroboration and which we must regard as

* I'say “in effect” because I write down cumulative probability distributions rather than his probability
densities, which in my notation involve

FO; T+ Ty = f F(x — u; T,)F(u; Ty) du.

Bachelier also assumes that the expected value of X — X, is by hypothesis zero, as in an unbiased
random walk, an assumption I do not yet make. Note: all my page references are to the English transla-
tion in Cootner [16]. The Stieltjes integral that I write as [, f| (x)P(dx) can also be written as

%, f(x)dP(x).
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not uninteresting. To illustrate his typical researches, let me sketch his rational
theory of warrant or call pricing.

Axiom. The expected value of a common stock’s price change X,., — X,,
is always zero, as in a fair game or ‘“‘martingale.”” An option enabling you to
buy it at an exercise (or “‘striking’) price of a dollars exactly T periods from now
is to be given a market price today, W, such that it also faces you with a fair-game
process.

I shall not spell out in detail the arguments. But notice that if X ; ends up below
the exercise price a, you will not want to exercise and will lose what you paid for
the warrant ; and for every dollar X ; exceeds a, you make a dollar of gross profit
by exercising. Hence, the value of the warrant that makes your net profit zero
must be the following function of the time left for the warrant to run T, and the
current price of the common stock, x:

(4.6) Wi(x; T, a) = on (u — a)F[du — x); T].

Assuming that F does satisfy Bachelier’s Gaussian form of (4.3), it is easy to
derive

4.7) Wi(a;T,a) = kaﬁ ,

where k is a simple normalizing constant and ¢ is a parameter measuring the
“volatility” of the stock’s unbiased random walk per unit time period.

Thus, such a warrant or ““call’’ with 2 years to run will be worth only about
40 percent more than one with 1 year to run (since \/i ~ 1.4). To be double the
worth of a one-year warrant, we must pick a 4-year warrant. This morning I
checked the newspaper ads for puts and calls and verified that this square-root-of-T
law does hold approximately for call quotations over 30-day, 60-day and 180-day
periods.

As another empirically good approximation when price changes can be repre-
sented by a probability density that is symmetrically distributed around zero—as
Bachelier deduces and Kendall’s observations loosely confirm over short time
intervals—we can differentiate (4.6) to get, as I did some 20 years ago,

4.8) oW(x; T,a)/ox = +% atx =a.

This confirms the market rule of thumb: for each dollar rise or fall in market
price above or below the exercise price, a warrant and call is marked up or down
by approximately $3. Perhaps this common rule was developed from the cruder
argument that the chances are 1/2 that the option will be worth exercising and
that you will collect that dollar above the exercise price.

Note that the Bachelier model has only one parameter in it to be estimated,
namely . When that is known, all kinds of random variables that depend on x
—such as W(x; T, a), such as the probability of making a positive profit on a
warrant—take on a determinable probability distribution whose parameters can
be compared with observed statistics of performance. Bachelier makes several
such tests, with results he considers highly satisfactory.
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Moreover, here art has improved on nature. Many modern researchers on
warrant pricing, such as Shelton [105] and Kassouf [45], [46], have come out
with regressions that sometimes deny the significance of a stock’s volatility. This
result I consider incredible—imagine paying as much for a warrant on sluggish
AT&T as on jumpy Ling-Temco, price and durations being similar. Bachelier’s
formulas show that volatility is the name of the game. Indeed, if stock A has twice
the ¢ volatility of stock B, then as much will happen to 4 in one year as to B in
4 years and A’s l-year warrant will have the same value as B’s 4-year warrant.
Specifically, for F Gaussian with zero mean, we can write

4.9) W(x; T, a,o) = aW(x/a,o?T,1,1),

where

(4.10) W(x;t,1,1) = Jw (u— )exp {—3(u — x)*/t} du

1

1
V2nt
a definite integral easy to tabulate.

S. Absurdity of unlimited liability. Seminal as the Bachelier model is, it leads
to ridiculous results. Thus, as the running period of a warrant increases, its value
grows indefinitely, exceeding any bound (including all the money that there is in
the universe)! A perpetual warrant, of which Tricontinental or Alleghany are
only two out of numerous examples, should sell for an infinite price; but why
would anyone in his right mind ever pay more than the value of the common
stock itself for a perpetual call on it—since owning it is such a perpetual call,
and at zero price?

I have skipped the details of how Bachelier allows for accruing interest (or
dividends) since it is the discussion of these tedious details at the very beginning
of his book that has served to lose him many readers. It suffices to say that the
absurdities of the model do not trace to this feature of the problem.

Before 1 had become aware of Bachelier’s work, my own experiments with
random walks and those of Richard Kruizenga [51], [52], who was writing his
put-and-call thesis* under my direction, had shown the untenability of an absolute
random-walk model except as a short-run approximation. An ordinary random
walk of price, even if it is unbiased, will result in price becoming negative with a
probability that goes to 1/2 as T — oo. This contradicts the limited liability feature
of modern stocks and bonds. The General Motors stock I buy for $100 today can
at most drop in value to zero, at which point I tear up my certificate and never
look back.

* Graduate students have a recurring nightmare that just as they are completing their Ph.D. theses
with their stellar contributions, someone will turn up in the ancient literature many of their findings.
This happened to Dr. Kruizenga when the Savage letter of inquiry arrived just as he was dotting the
final i’s on his own independent researches.



10 PAUL A. SAMUELSON

The absurdities to which the negative prices of the absolute random walk
leads® are a result of its supposition that independent absolute increments

(Xt+1 - Xl) + (Xt+2 - Xt+1) + -

can lead to X; — X, losses indefinitely greater than the original X, principal.
Since the warrant buyer avoids these alleged indefinite losses, if he is to experience
a fair game he must pay an indefinitely high price for the warrant.

There is a hidden subtlety that must be unearthed here. Bachelier, a European,
always has in mind what I have called in [90] a “European’ rather than an
“American’ warrant. In America a warrant with T time to run can be exercised
at any time in the interval from now to then, i.e., at any ¢’ irf the interval

to < Sto+ T

Moreover, the American warrant holder has paid for it in advance and can throw
the warrant away whenever he wishes to. By contrast, a European warrant is
exercisable only at the end of the period, at t, + T, and final settlement in-
volving the premium originally agreed upon for the warrant must be made
then. The warrant holder cannot simply walk away from his obligation in the
interim.

Now it is a theorem that the European warrant and the American warrant
have the same value, and that an American warrant will never rationally be
exercised prior to its termination date—provided the common stock and the
warrant are postulated to earn the same mean percentage return per unit of time
(in Bachelier’s fair-game case, a common zero expected return) with all accruing
dividends or interest being ignorable. See Samuelson and Merton [95] and
Appendix footnote A4.

Let us now “Europeanize,” so to speak, the holding of the common stock and
suppose that at the end of some stipulated time period T, say at the time when it
is known that I will die, I must settle my stock holding, receiving positive dollars
if X, > 0 and having to pay negative dollars if X; < 0.  am not sure that I, as a
prudent concave-utility maximizer, would ever dare hold a common stock that
involves such unlimited European liability. Certainly I would not hold it in
preference to cash at Bachelier’s postulated zero mean return!

To summarize: The absolute-Brownian motion or absolute random-walk
model must be abandoned as absurd. My own solution was to fasten upon
Gertrude Stein’s lemma: “A dollar is a dollar is a dollar.” This leads naturally
to the geometric Brownian motion of the next section.

5 Bachelier in [16, p. 28] shows a guilty awareness of the defect in his model involving negative
prices, as his translator, A. J. Boness, notes. Bachelier says, “We will assume that it [stock price, X,]
might vary between — oo and + oo, the probability of a spread greater than X, [ie, [X; — Xol > Xo,
or X, < 0] being considered completely negligible, a priori.” For T large, this is a self-contradiction
to his own absolute-Brownian-motion theory.
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6. The economic geometric Brownian motion. The simplest hypothesis to
circumvent difficulties is the postulate that every dollar’s worth of a common
stock’s value is subject to the same probability distribution. That is,

(6.1) Prob {X .1 < x7|Xo = xo} = P[xy/x0; T]
with x; = 0. Since
X7, +1,/X0 = (X1, +1,/X1,)(X1,/X0)

Wwe can write

]

6 Plerrfsoi T+ T = [ Py, /v, s TOPdxr f0): T,
0

where x, is a given constant.

Warning: This explicitly assumes ‘“‘independence” of the various ratios
(X1,+1,/X1,» X1,/X0). In terms of more general conditional probabilities, one
would have to write

F(xg, 4 ,0x7,, X0) # F(X1, 4 1,1X7).

When writers speak of the “random-walk theory of speculative prices,” there are
actually many ambiguous possibilities being implicitly contemplated. Sometimes
price changes, or changes in such a function of prices as log X ,, are assumed to be
subject to probability distributions independent of all previous prices. But some-
times no more is meant than that the expected value of such a price change is
uniformly zero (or some other prescribed drift parameter) regardless of past
known prices. Almost every random-walk theorist assumes, at a minimum, the
Markov property that conditional probabilities of future prices depend at most
on present prices, in the sense that knowledge of X,_, does not add anything
about X, 7 once X, itself is specified. When this is denied, theoretical formulas
of warrant prices W(x ; T) have to be written as W(x, y; T), where y is some vector
of past common-stock prices.

Equation (6.2) obviously is the multiplicative counterpart of (3.1)’s additive
process. Were it not for the complication that there may be a positive probability
of ruin, i.e. P(0, T) > 0, we could work with the logarithms

(63) Ve = lOg Xes Ve — Yo = IOg (xt/xo)

and employ analogous integrals to those in the Bachelier absolute Brownian
motion. At Bachelier’s level of rigor, which ignores infinite-moments of Lévy—
Pareto additive distributions and infinitely divisible distributions involving discrete
probabilities of the Poisson type, we could state that the only solution to (6.2)
for T; nonnegative real numbers would be the log-normal distribution

(6.4) P(x;T) = L(x; uT,0,/T),
where

oJ/T
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N being the normal distribution of (4.4), and where

X feel
U= E{log —1} = f log xL(dx; u, o)
Xo 0

1 f‘” [ 1(y — #)Z]
= — yexp| —= dy,
216 Y - P 2 o’

© 1 Y
j (y — w)exp [—5 v O_zﬂ) ] dy,

0

X}_ 1

Xo J2ne
X, J"”

e =Eq{—) = xL(dx; u, o)
-,

1 f * 1(y— #)2]

e’ exp [—— dy
2noJdo 2 o
= ettio,

Even if (6.2) holds only for integral values of Tand T;, the central limit theorem
will ensure in a large variety of cases—e.g., where specified moments are finite
and P(0; 1) = O—that P(x; T) is “approximated” by L(x; uT, oﬁ )as T becomes
large. This means that certain normalized variates, such as

(6.6) [log (X 1/X o) — T E{log (X /X ¢)}][T? Var {log (X,/Xo)}]~ '

have a distribution that is well approximated by N[ - ]. This fact does not mean
that necessarily we get a tolerable approximation of the form

(6.7) E{X1/Xo}exp[T(p + 36%)] '=1 asT—- ©

as uncritical combination of (6.5) and (6.6) might suggest.
Actually, if P(x; 1) is not itself log-normal, we shall have

(6.8) E{X/Xo} = exp(u + 30° + b),

where b is not zero save for singular coincidence. In that case the left-hand side
of (6.7) becomes ¢®T which departs ever farther from unity as T — oco! This will
come as no real surprise to students of limits.

Having altered Bachelier’s assumption of an absolute to a relative random
walk, I might as well generalize his assumption that the random walk is an unbiased
profitless-in-the-mean fair game.

. Instead I assume that the mean or expected outcome grows like compound
interest at the rate o > 0. That is,

E{X1/Xo} = J:o xP(dx; T)

=T ={F xP(dx;l)}T.
0

Bachelier’s special case is that where o = 0.

(6.9)
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The value of a warrant can be directly calculated by quadrature if we stipulate
that holding it is also to produce a mean return per unit time, 8, and with 8 to be
exactly equal to a.

As shown in Samuelson [90], the rational price of a warrant, as a function of
present stock price, x, time to run, 7, and exercise price, a, becomes, with « =
and the log-normal distribution,

W(x,T;0%,a,a0) = e'”f max (0, xZ — a)L(dZ; Tu, Tc?)
0

® 1
= e'“Tf max (0, xe¥ — g)———
—© )« / 27[0'ﬁ
1(Y — Tu)?
P [ 2 ot |V
(6.10)
= xN[v] —ae *TN[v — 0'\/;],
v = [log(x/a) + (2 + $6*)T)/(ay/T).
By substitution it is easy to show that this can be reduced to

(6.11) W(x,T;6%,a,0) = ae “"W(xe*T, To?: 1,1,0),

where
W(Z,t) = W(Z,t;1,1,0)

1

< 2nt
= ZNI[(log Z + 1)//t] — Nl(log Z — 1)//1]

fw (Ze" — 1)exp[—3(Y + L1)?/t]dY
(6.12) e

can be tabulated once and for all for a convenient range of t values.

My version of the geometric Brownian motion based on the log-normal rather
than normal distribution does remove Bachelier’s objectionable feature of having
the warrant price grow indefinitely with T, since for my case

(6.13) lim W(x, T;0%,a,a) = x.

T—- o
But we still retain the advantage of Bachelier’s behavior for short T, since
(6.14) W(a,T; 0%, a,a) ~ kay/T
for T sufficiently small, just as in (4.7).

The notion of skewness of price ratios is an old one in economics. A century ago
when Jevons computed his first index numbers, the geometric rather than
arithmetic mean suggested itself. Wesley Mitchell’s extensive report on World
War I price changes confirmed this asymmetry for all but the shortest-run price
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variations. The log-normal distribution, dependent on a law of “proportional
effect,”” was popularly referred to in the economics literature of 30 years ago as
Gibrat’s law, after the French engineer and econometrician Gibrat [34]. See
Aitchison and Brown [1] for its properties.

Independently of my replacement of the absolute or arithmetic Brownian
motion by the relative or geometric Brownian motion, the astronomer Osborne
[76] noted the empirical tendency (i) for a cross-section of common stock prices
to be approximately distributed by the log-normal distribution, and (ii) for an
even better approximation by that distribution to an array of price changes of
each stock. Other investigators have found similar approximations to the price
ratios of single stocks. To rationalize these empirical facts, Osborne made
frequent reference to the Weber—Fechner law in psychology. The validity of that
law in the field of psychology itself has perhaps been overrated: in any case I
would regard Weber-Fechner analogies more as scientific metaphors for the
prosaic fact of proportional effects than as independent rationalization. Where
the poetry may have gotten in the way of the prose is in connection with Osborne’s
hypothesis [76, p. 108] that E{log(X,,,/X,)} =0, a logical deduction that I
cannot follow and which is at some variance with his assumption two pages earlier
that men act to maximize the first moment of money itself rather than of a strongly-
concave function of money. Moore [75] gives a modified paraphrase of Osborne’s
argument, which depends upon the doubtful postulate that men generally have
Bernoulli logarithmic utility, U(W) = log W, in which case an either/or choice
of all cash or one stock would become a matter of indifference on Osborne’s
postulate. Actually if log (X,,/X,) has a zero first moment for each stock, a
combination of two stocks can be expected to have a positive first moment. Why
neglect the opportunity of people to trade in paired units? I am afraid that the
Weber-Fechner arguments lack economic cogency.

As will be seen in §9’s discussion of possible martingale properties of prices,
one cannot in economics insist upon necessary absence of price bias. (Osborne,
in his taking note of inflation as a separate reason for price change, must ask
himself whether in Germany’s 1920-1923 hyperflation, when interest rates were
millions of percent per month, log {P, ,/P,} was ex ante or ex post a martingale?
Let me add that the array of prices in Wall Street today depends upon how
corporations choose to split their stock and pay stock dividends: if price ratios,
X,+1/X,, were otherwise log-normal and all firms split every stock 4-to-1 when
it reached 100 in price, the resulting distribution would be skew but not log-
normal.)

My own preoccupation with price ratios rather than price differences came
from the fact that, in an ideally competitive market, each small investor can,
except for brokerage charges, do the same with one dollar as with a million. The
homogeneity-of-degree-one property of investment opportunity, plus the simplifi-
cation of stationarity of opportunity whether a stock is quoted in units of $20
or of $40, suggested the identity

P(X7,X0;T) = P(X1/Xo; T)

from which log-normality emerges as an asymptotic or instantaneous result.
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Let me say a word about Lévy—Pareto alternatives to Gaussian distributions
for X, or X,,,/X,. Mandelbrot [61]-[64] and Fama [25]-[31] have found some
evidence for Lévy-Pareto distributions with fat-tail parameters a ~ 1.9 < 2 of
the Gaussian cases. All investigators have noted that there tend to be many more
outliers than in the log-normal or other Gaussian approximations. On the other
hand, as later sections will suggest, I am inclined to believe in Merton’s conjecture
that a strict Lévy—Pareto distribution on log (X, ;/X,) would lead, with 1 < a < 2,
to a S-minute warrant or call being worth 100 percent of the common! Evidently
the all-wise market does not act as if it believes literally in Lévy-Pareto distribu-
tions, even though it may sense that there is some validity to the alternative
notions of ‘“‘subordinated processes’ discussed by Clark [14], Press [80], and
Feller’s classic text, and which also lead to fat tails with abnormally-many outliers.

7. The general case where warrant and stock expected yields differ. The above
analysis, which agrees with results of Sprenkle [106] and other writers, assumed
the special case of § = «, for which one can easily prove that conversion will never
take place prior to expiration of a warrant, so that there is no advantage over a
European warrant (that must be exercised only at the end of the T period) for
an American warrant with its privilege of exercise at any time at the option of
the holder.

Since warrants may be more volatile in price than stocks, concave utility
maximizers might require that they have § > . Certainly in real life perpetual
warrants do not sell for as much as the common stock itself, as (6.13) of the § = «
theory requires. In any case, if the common is paying out a dividend at an in-
stantaneous percentage rate of its market value of 6 > 0, at the least we should
expect

(7.1) B=oa+8>a=0.

Hence, in my 1965 paper [90], I tackled the tougher mathematical problem of
p > a,for which conversion of a warrant with T periods to run becomes mandatory
when

(7.2) X,/a > c(t; B, a,0?), lim c(¢t; B, &, 62) = (B, «, 6?) < 0.

Some very hard boundary problems to the partial differential heat equations
arise, as the reader can verify by referring to the mathematical appendix to [90]
that H. P. McKean, Jr., generously provided in [68]. Exact solutions for the W
function are known only for the perpetual log-normal and Poisson cases, and
for warrants of all time periods in the rather special case where

Prob {X,/X, = T} = 7T,

(7.3)
Prob {X;/X, =0} =1— e,

However, Robert Merton and I have made good computer approximations to
the general solution and hope some day to publish abbreviated tables.

Dividends aside, the need for the difficult § > « case has been lessened by the
alternative theory of warrant pricing that Merton and I worked out in [95],
based upon utility maximization.
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More important, a fundamental paper by Black and Scholes [8] restores the
B = a case’s mathematics to primacy. My 1965 paper had noted that the
possibility of hedging, by buying the warrant and selling the common stock short,
should give you low variance and high mean return in the § > o case. Hence,
for dividendless stocks, I argued that the f — « divergence is unlikely to be great.
I should have explored this further! Black and Scholes show that, if the posited
probabilities hold, transaction costs aside, in a world where all can borrow and
lend at a riskless interest rate r, by instantaneously changing hedging proportions
in an optimal way, one could make an infinite arbitrage profit over the period to
expiration unless warrants get priced according to the (6.10) § = a formula

152 1.2
W(x,T;c% a,r)=xN log (x/a) + (r + 20 )T)—ae"‘N(]Og(x/a)+(r 20T .

o T T

This is indeed a valuable breakthrough for science.®

Since my audience includes mathematicians, I have asked Robert Merton to
sketch in the Appendix the continuous-time Brownian-motion aspects of the
warrant problem. Merton deduces the Black—Scholes solution in elegant form.

8. Speculative price a “fair game”? Why should the spot price of wheat in
Chicago have a zero mean change? At harvest time, price should be low; to
motivate people to store it through the months after harvest and before the next
harvest, its spot price ought to rise systematically—and it does! With price
indexes showing inflation predominantly throughout this century, indeed
throughout the history of capitalism and for that matter the preceding centuries
of recorded history, is there any jury which believes or will act upon the belief
that the observations of spot-wheat price changes to come over the eons of time
ahead always have a first moment of zero?

If Kendall’s serial correlations in [48] do not pick up any systematic movements
in spot prices, so much the worse for the power of such short-run statistical
methods. Had Kendall’s observations been on “wheat futures” (i.e., the price
changes of a contract to deliver spot wheat at some one specified future date)

¢ Under such pricing, the expected instantaneous percentage return on the warrant is no longer a
constant f3: instead § will grow when x/a is low and also when T is low, approaching down toward o
as either of these gets large.

Warning: If the Black—Scholes pricing is violated, the universe will not explode as it would if (8.1)’s
true-arbitrage situation were to hold. The market need not believe in the Black—Scholes formula in
the way that it must believe in formulas that prevent (8.1) from being possible. Thus, how can a rational
arbitrager “‘know with certainty” what the o is that he needs to do the arbitrage? A more hypothetical
arbitrage is involved in the Black-Scholes formalism, namely the following. Query: What pattern of
pricing, if it were known to hold with certainty (if, if!), would prevent the possibility of arbitrage?
What pricing pattern will yield no profits to locked-in arbitrage strategy that must be engaged in until
expiration time? Answer : the Black—Scholes pattern of pricing and no other. See the Samuelson review
[94] for a similar critique of the Thorp—Kassouf [109] allegedly sure-thing arbitrage in reverse-hedging
of expiring warrants. That the Black—Scholes formalism cannot cover all cases is shown by the case
where complete ruin is possible with finite probability. Thus, let P(0;T) = 1 — ¢ T as in (7.3) and
PO+ x;T)=(1—e ") + e *TL(x; T, T), so that only for b = 0 do we have (6.4). The possible
discrepancy from Black—Scholes pricing, intuition suggests, must grow with b.
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rather than on spot or actual physical wheat at different dates, that would have
been quite a different matter, as I shall show. Then there are some new and different
reasons to expect an approach to fair-game or martingale properties. Aside from
experience with spot prices, think of their theoretical causation. Wheat price
will depend on, inter alia, the weather and the business cycle. Causes of changes
in the weather are numerous but they are surely not independent through time.
Persistence patterns of positive autocorrelation are commonplace. Business cycle
components, such as GNP or price levels, are not themselves serially-independent
series—far from it—even if some of the exogenous shocks that the endogenous
system cumulates may approximate to such patterns of independence.

Everything that I have said of a price like that of spot wheat can be equally
said of the quantity of wheat produced, consumed, sold or stored. If these
magnitudes are random variables, there is no reason why at every time scale they
should follow probability distributions that lack dependence through time.

However, returning to price—particularly to the speculative price of a common
stock or a commodity future, quoted in competitive markets in which there are
many buyers and sellers, each free to buy and sell at posted prices without having
to worry that his actions will greatly alter quoted prices—we find repeatedly in
the literature a special reason why expected price change should be zero or small.
The argument goes as follows.

Argument. Expected future price must be closely equal to present price, or else
present price will be different from what it is. If there were a bargain, which all
could recognize, that fact would be ‘““discounted” in advance and acted upon,
thereby raising or lowering present price until the expected discrepancy with the
future price were sensibly zero. It is true that people in the marketplace differ
in their guesses about the future: and that is a principal reason why there are
transactions in which one man is buying and another is selling. But at all times
there is said to be as many bulls as there are bears, and in some versions there is
held to be a wisdom in the resultant of the mob that transcends any of its members
and perhaps transcends that of any outside jury of scientific observers. The opinions
of those who make up the whole market are not given equal weights: those who
are richer, more confident, perhaps more volatile, command greater voting power ;
but since better-informed, more-perceptive speculators tend to be more successful,
and since the unsuccessful tend both to lose their wealth and voting potential and
also to lose their interest and participation, the verdict of the marketplace as
recorded in the record of auction prices is alleged to be as accurate ex ante and
ex post as one can hope for and may perhaps be regarded as more accurate and
trustworthy than would be the opinions formed by governmental planning
agencies.

The above long paragraph is purposely made to be vague, in faithful reproduc-
tion of similar ideas to be found repeatedly in the literature of economics and of
practical finance. For sample passages dealing with the notion that competitive
anticipations must, or often do, make price changes a fair game, the reader may
dip into the Cootner symposium [16], where views of such diverse writers as
H. Working, Taussig, Cootner, A. B. Moore are to be found. More recently,
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Samuelson [90], Mandelbrot [62], [64], Fama [31], and many others have grappled
with this same notion of “‘efficient markets.”” This Fama reference gives a valuable
survey.

The discussion has come full circle. The economists who served as discussants
for Kendall’s 1953 paper [48] were outraged, as he expected them to be, at the
notion that there is no economic law governing the wanderings of price, but rather
only blind chance. Such nihilism seemed to strike at the very heart of economic
science. But more recently there have been plenty of economists to aver that,
when speculation is working out its ideal purpose, the result must be to
confront any observer with a price-change pattern that represents “‘pure white
noise.”

Sometimes competitive-discounting-leading-to-fair-game-price-changes is
deemed to be practically a tautology, based upon the definition of competition.
Actually, I would argue, the purported assertion is empirically untrue. Yet what
we have here is a suggestive, heuristic principle. Most passages dealing with this
problem, you will find when you put magnifying glasses on them, are quite unclear
as to what theorems are being stated and what modes of proof or validation are
being proposed.

Recall that spot wheat price series. Better still, concentrate on nonstorable fish
or sweet corn. Suppose everyone knew that next year fish will be more plentiful
and its price lower. How could anyone arbitrage out that insight in order to bring
fish price today, when the catch is small, into equality with next year’s price?
Or with the next decade’s price? (My final section will discuss commodity models
where spot prices are anything but martingales.) Similarly any economist who
stops to think about the matter will realize that there is nothing anomalous about
a low-coupon bond, say one now paying 3 percent a year, being confidently
expected to rise in every period from now until its maturity date if during that
period the market rates of interest are expected to stay far above the bond’s
coupon rate. Not only can such a discount bond have a positive first moment of
price change, arbitrage equilibrium requires its price to rise. So it may be with
common stocks. If inflation raises index numbers of goods’ prices by 10 percent
per year and can be expected to do so, no doubt the safe interest rate will have the
expected 10 percent built into it; and anyone who expects a common stock to
form an unbiased random walk, lest he be able to arbitrage out the expected
price rise, would be crazy in view of the fact that the interest cost or “opportunity
cost” of buying stocks now for resale later will no doubt involve interest rates
and needed stock-price appreciation rates of at least 10 percent to make the
venture worthwhile.

And which is zero, absolute price change, or logarithmic price change? Why
not the change in f(X,), where y = f(x) is a monotone two-way mapping of x
and y? Most writers do not even think to ask these questions, being content with
the primitive notion that if you can buy a thing at one price and know with
certainty you can sell it at a higher price, then there is a patent contradiction.
This kind ‘of classical sure-thing arbitrage is portrayed by the following infinite-
value linear programming problem :

You can exchange gold at the U.S. mint for silver in a 17-1 ratio; with the
silver achieved, you can go to the Asian Mint and get gold at a 1-16 ratio; thus
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your terminal gold can become an infinite amount X ,, namely the solution to
the trivial problem

(8.1 max (17 — 16)X; subjectto X, = 0.

Commodity and stock markets offer no such easy arbitrage to the speculator,
save in singular cases not germane to the present discussion.

Mandelbrot, one of the few authors who attempts a serious discussion of
advanced discounting, in [64] couples with an arbitrary time series Py(t), a new
arbitraged time series P(t), where

(8.2) E{Pt+T)— P@t)} =0

and where P(t) is “‘constrained not to drift from Py(t) without bound.” Actually,
he concentrates mostly on cases where Py(t) — Po(t — 1) = AP,(t)isitself generated
as a linear function of a series of past random variables (“innovations”) which
are of finite variance and serially uncorrelated :

(8.3) APy(t) = Z L(s)N(t — s).

— o

When the L(s) coefficients are suitably convergent and the underlying probability
distributions are subject to suitable restrictions, the new arbitraged { P(t)} sequence
can be defined so that AP(t) is proportional to N(¢), or what is the same thing, to
a calculable linear sum of present and past [Py(t)] values, the coefficients to be
selected so as to minimize the mean least-squares drift of P(t) — Py(t).

I have not done justice to Mandelbrot’s discussion, nor to his extension to
imperfect arbitraging, both because of space limitation and the imperfection of
my understanding of how his mathematics relates to economic models. So let me
in § 10 give an economist’s version of what can be expected to be arbitrageable in
an idealized commodity market. In concluding this section, I shall sketch briefly
my own deductive derivation of the martingale property of competitively-
anticipated prices. This is the only unambiguous statement known to me of what
seems to be the root notion in the long passage labeled Argument.

Let a spot price, say of wheat, be designated as Py(t), and let it be subject to
any known stochastic process, which need not even be a stationary one. Examples
are the following:

(8.4) Po(t + 1) = .5Py(t) + thy4 4, u, an independent random variable,

(85) Prob {Pyt + 1) = jIPo(t) = i} =

jo

where [g;;] is a Markov transitional probability matrix with nonnegative
coefficients and row sums that add up to unity.
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In the first of these cases
T-1
Yr = E{Py(t + T)IPo(t)} = (ST Pol0) + E{ 5 (.5)'u,}
0
(8.6) r
= (5" Po(1)

if the expected values of the error terms are always zero. At the end of one period,
we shall have

Yp_y = E{Py(t + 1 + T — 1Pyt + 1)} = (5)T " 'Polt + 1)
8.7 = (5T YS)P@E) + (5)" tu,
E{YT—I - YT} = (.S)T_lEul = 0
Similarly
(8.8) ’ E{Y,_,—-Y}=0, t=T,---,1,
making the sequence [Yr, Yy_y, .-+, Yo = Po(t + T)] a martingale. Note that

the Y’s are a new time series, P(t), distinct from Py(t) but related to it.
In the second example

(8.9) Yr = E{Py(t + T)IPy(t) = i} = leaiTjJ',

where
a" =a-a" ' = [af], T=1,2,---

Note that Yy is a random variable taking on different values foreachi =1, ---, n.
Also

Yr_1 = E{P(t + 1 + T— 1)Py(1) = i} = Y af;" Y},
1

T

E{Yr_; — Y;|Py(t) = atk Z a, - Zaijj
j= 1

IIM:

k

(8.10)

T .
ij aiTj)J

~.
i1

0.

Again the market price quoted for the future contract payable at fixed time T
from now will oscillate through the sequence [Y,, Y;, ---, Yp = Po(t + T)] but
as a martingale

(8.11) E{Y,_, — ¥} =0.
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This is evidently a general principal, as embodied in the following theorem.
THEOREM ON DRIFTLESS ANTICIPATIVE SPECULATIVE PRICE. Let

PrOb{Po(t + T) £ x4 Polt) = xo, Po(t — 1) = x_,, } = Frlxr;xo,x_1, -],

Yr & E(Py(t + T)lx %e— 1> -+ }

(8.12) . .
ef
YT—kd= E{Py({t + k} + {T — k})|X, 45 Xsr—15 """ J-
Then
(813) E{YT—I = Yrlx;, X g5 } =0.

By induction,
(8.14) E{Y, — Y} =0, k,j=0,1,---, T

The proof is immediate from repeated use of the identity
(8.15) Frlxr;xo,x_y, - ]= f Fr_qlxr5x1,%0, -+ JFi[dxy 5 X0, Xy, -+ ]
0

as in Samuelson [89], where it is shown that Py(t) and x, can be given a vector
interpretation so that price changes of wheat may depend on price data for corn
and on weather elements of the vector.

The strict martingale property is more than one can expect to occur econom-
ically when there is a cost (interest, psychic disutility of bearing risk, etc.) to
maintaining a position. In that case, rather than equaling the [Y;_,] sequence,
the futures price, P(t), may instead be related to a transformed variable [Z;_],
where

Zy=1Y,,

Zl = ll_lYl,

8.16
( ) Zz=ll_lj,2—1Y2,

Zp=A{t - A7 Y
These present-discounted-values have the quasi-martingale property, for Z, known,
(8.17) E{Zt—llzt} = ]'tE{Yt—IIYt} = 4.

Here A, = 1 + p, is a kind of an interest premium that the risky futures price
must yield to get it held. (Remark : Unless something useful can be said in advance
about the [A,_;]—as for example 4, — 1 small, or 4, a diminishing sequence in
function of the diminishing variance to be expected of a futures contract as its
horizon shrinks, subject perhaps to a terminal jump in 4, as closing-date becomes
crucial—the whole exercise becomes an empty tautology.)

I leave this subject of perfect discounting of price changes by “‘perfect specula-
tion” with some needed remarks about the benefits and losses from speculation.
Populist electorates often regard speculation as sharp-dealing at worst, as gambling
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at best. Apologists for bourses and for laissez-faire by contrast regard the speculator
as a noble and nimble operator who takes on his shoulders the irreducible risks
of society for zero or little risk-premium : successful speculation, and the apologists
think this to be dominant in the long run, enriches the speculator only by virtue
of the fact that it enriches society even more.

Briefly, let me state what correct analysis suggests.

1. To the degree that speculation brings about an equilibrium pattern of inter-
temporal prices, society benefits in the Pareto-optimality sense: in the absence of
equilibrium, there exists in principle a movement that could simultaneously make
everybody better off. See, for example, a textbook discussion like that in Appendix
Chapter 21 of Samuelson [82], or see Samuelson [87], [99].

2. There is some empirical evidence, as already mentioned in connection with
Working and others, that some organized commodity markets approximate to
equilibrium intertemporal price patterns.

3. The conclusion does not follow that the speculator necessarily ‘“‘deserves”
his gains. As demonstrated in Samuelson [87, p. 209], a man who is quicker in
his response reflexes to new information by only epsilon microseconds might
capture 100 percent of the transfer rents created by the new data. He would
become rich as Croesus but, in this strong case will have conferred only an epsilon
degree of benefit to society—say a nickel’s worth.

4. Some speculators can be destabilizing; and, where imperfections of com-
petition prevail or where self-fulfilling processes are possible (as in the case of
exchange rate speculation that depreciates a currency and induces the increase
in central-bank money supply that “‘justifies’’ the depreciation), these destabil-
izing speculations can be profitable. Also, existence of speculative markets can
serve as an attractive nuisance to cause those who are over-optimistic to incur
losses, to incur deadweight brokerage charges, and to hurt themselves and their
families.

5. Finally, as in Samuelson [101] it can be proved that, under specifiable general
conditions, the unsuccessful speculator, in hurting himself, does add benefit to
the rest of the community—but in amount less than the hurt to himself. This
sounds as if the utilities of incommensurable minds are being compared. But,
actually all that is being asserted is that unsuccessful speculation destroys Pareto-
optimality : if it could be reversed, everyone could be made potentially better off.
(Indeed, in the commodity model of my last section, mistaken carryover of grain
by half the identical population, under the mistaken belief that next year’s crop
will be definitely short, will do first-order harm to the speculators and confer
infinitesimal benefit—i.e., benefit of a second order of smallness—on the rest of
the community.)

A fair conclusion is that a priori dogmatism in this matter is unwarranted.
Pragmatic evaluation of the costs and benefits of empirical speculative in-
stitutions and their alternatives is needed for eclectic decision and opinion
making.

We have seen that much of the vague discussion about ‘“‘random walks” of
stock or commodity prices does not distinguish closely between processes involving
independent increments of price changes or price ratios and unbiased martingales.
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In the language of autocorrelation, an independent-increment process will involve
zero serial correlation of lagged price ratios or differences. For this there is some
evidence. Against this, some evidence has been marshaled. One attempt, which
partially misfires, is that by Shelton [104]. He points out that the universe of
entrants to the Value Line contest, in which each entrant selects a portfolio of 25
stocks out of a much longer list, ends up with a subsequent distribution of port-
folio gains that has a mean greater than the mean of a portfolio made up of the
larger universe of eligible stocks. The difference in means could not remotely
arise by pure chance. I do not regard this as a cogent refutation of the hypothesis
that each and every stock is subject to an independent increment random process.
Shelton’s findings are consistent with the alternative hypothesis: Volatile, high-
variance stocks require a higher mean gain than the rest; people who enter
contests correctly go for volatility in terms of that game’s payoff function. This
explains why Shelton’s observations have such high variance, and could explain
their superior mean performance.

In very short periods, there is weightier evidence in favor of some negative
serial correlation. Thus, if by chance, more people want to sell GM today than
buy it, the specialist in GM will oblige them but at lower and lower prices.
Tomorrow, when by chance, more people want to buy than sell, the specialist
will oblige them on an up scale, perhaps returning to his same normal inventory
but having made an adequate profit by virtue of having bought cheaper than he
sold.

Mathematically, this kind of negative serial correlation would occur in the
first differences of prices (or, better, their logarithms) as a result of an assumption
that the levels of prices are subject to a uniformly and independently distributed
probability. Thus, replace

(8.18) Prob {X,,, — X, < AxJAx,_;} = F(Ax,)
by
(8.19) Prob {X,,, < x/x,_{} = G(x,).

Then Prob {X,,; — X, £ AxJAx,_,} will increase as Ax,_, grows, in the same
way that my electric bill tends to be lower in a month after it has been high when
random errors in meter reading are involved.

This negative serial correlation is presumably weak and confined to short
periods. It presumably gives the specialist, scalper or floor-trader his raison d’étre.
This simplest model of this process I can describe as follows.

Suppose that the net algebraic amount that people want to sell of a stock
in any period, X, is a random variable with a systematic part that is a weakly
increasing function of its price above some perceived normal level, e.g., is propor-
tional to P, — P* = p,, plus a purely random-noise component with zero mean,
fixed variance, and zero serial autocorrelation. Suppose that the specialist lowers
(or raises) his price in proportion to algebraic net sales X,. Then our stochastic
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equation becomes

820) p.— D1 = —aX, = —abp, — au,, a>0, b>0,
P = Cpi—q + U, O<c=(1+ab)" ' <1, v,=—a(l + ab) u,.

Price will then perform a Brownian-like vibration around the normal level P*,
and there will be an ergodic probability

Prob {P,,r < yIP} = Qr(y; P),

(8.21) )
Thm Q+(y; P) = Q(y) independently of P,.

The specialist stands to make a mean profit per unit time, subject to finite variance,
and proportional to ac%. What determines a is not clear: perhaps the specialist
stands to lose his monopoly position if he makes a too large.

The above presupposes that the specialist is not unpleasantly surprised by an
unperceived permanent change in the P* level. Thus, if P* rises permanently for
some fundamental reason and the specialist does not recognize that this is going on,
he will be selling out his normal inventory at too-low prices and be able to
replenish it only at a loss. There seems to be a basic conflict of interest: the
specialist is a small and steady winner from purely random fluctuations, but
stands to be a big loser if he bucks unforeseen fundamental trends. (In connection
with the present heuristicremarks, [ am indebted to an unpublished Bell Laboratory
memorandum on related matters by Kreps, Lebowitz and Linhart [50].)

9. Portfolio optimization. The 1965 theory of economic Brownian motion
sketched in the last section might explain how, if we had futures markets for
stocks, the futures price quoted for General Motors common to be delivered on
October 11, 1972, might fluctuate like a quasi-martingale for the 12 months
between now and then. In the notation of the last section, we would be talking
about a P(t) or (Yr_,) of GM futures price and not a Py(t) or X, of GM common
stock. None of the last section’s content touches the question of the probability
laws that the common stock might itself be expected to satisfy. In the present
section I cannot hope to outline a complete general equilibrium theory of stock
pricing, since that subject is still in its infancy. For a start on such a complete
theory, see Lintner [59], [60], Sharpe [103], Fama [27], Hirshleifer [39], Merton
[72], and Samuelson and Merton [95]. To salve my conscience, I do present in
§ 10 one complete general equilibrium model of stochastic speculative price,
namely one for a commodity market.

In the present section I shall merely sketch some typical models of portfolio
decision making. I do this with the thought that such models provide some of
the indispensable building blocks out of which a complete theory will have to be
built.

First, it is common to assume that a decision maker facing stochastic uncertainty
actstomaximize the expected value of the concave utility of his wealth (as dependent
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on the outcomes he faces), namely
6.1) U= f UW)dP(W) = E{UW)} < U(E{W}),
0

where U( - ) is a concave von Neumann utility function. (After all, von Neumann’s
work does apply! The von Neumann and Morgenstern classic [113] revived
interest in notions which have been endemic in economics since the eighteenth
century days of Daniel Bernoulli [7], Laplace, and Bentham, and many others.
I have a slight preference for the axiomatic approach of Ramsey [81], Marschak
[66], [67] and Savage [102], as I have discussed in [85]. A good general reference
is Arrow [4].)

It was long known that in choosing between safe cash and a zero-mean asset
with positive variance, all of one’s wealth would be put into cash if U is to be
maximized. Pioneering work by Domar and Musgrave [23], Markowitz [65] and
Tobin [111], [112], turned economists’ attention to models involving two param-
eters: a mean of money gain and a measure of riskiness, or in the case of the last
two, mean and variance

p= fo W dP(W),
92) o= W = dp(w),
0

U ~ f(u,0?) with of /oW > 0 > df /o>

In Markowitz’s valuable version, let a dollar invested ineach ofi =1,2,--- , n
securities give rise respectively to the random variables Z, ---, Z, with joint
probability distribution

9.3) Prob{Z, <z,,---,Z, < z,} = P(zy, "+, 2,)
with probability density

(9.4) pzy, -+, z)dz, -+ dz, = (0"P/0z, --- 0z,)dz, - - - dz,,.

Then the terminal wealth W, , will have the probability density
d(WIW(;l)f(WIW(;l;Wla R} Wn)
9.5) o o
= awwih [ | wrlp(wflwlwal
(o] 0

n
-1
—wj ;wjzj,zz,~-~,z,, dz, --- dz,

with mean and variance

(96) E{W1W(;l} = .u(Wl, Tt Wn) = ;WjE{Zj}’
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9.7) VIMWe 'l =6’ (wy, -+, w,) = iiwi“ifwj’
where L
9.8) 0ij = E{(Z; — E{Z})(Z; — E{Z}})}.

If p were a joint normal distribution, the solution to the maximum expected
utility problem would have to involve a (u*, 6*) choice that represents a solution
of the following quadratic programming problem:

9.9) min o%(wy, .-+, w,) subjectto p(wy, .-+, w,) = p*, Yw; =1
wi 1

This defines an “‘efficiency frontier” ¢* = M(u*), and depending upon one’s

degree of risk aversion one will pick the best of these frontier points, with its

implied (w¥) strategy.”

It is absurd to expect p to be literally a joint normal distribution since that
would violate the axiom of limited liability. An alternative defense of this Marko-
witz-Tobin procedure is possible in the case where U(W) is quadratic. However,
this assumption is known to lead to the odd result that, as I become wealthier,
I become more rather than less risk averse. See Samuelson [91], [98], Borch [9],
and Feldstein [32] for critiques of mean-variance analysis. The best defense of it,
I'think, is as a good approximation when the probability distributions are relatively
“compact,” as discussed in Samuelson [98]. For in such cases, the true solution
(w¥*) to the general problem

wi wi

max Uw,, -+, w,) = maxf f U(WOijzj)p(zl, <oy z)dz, -+ dz,
0 0 1

9.10 —
( ) = U(WT*’ Y W:*)

will be close to a (w}) solution on the Markowitz frontier.

Many of the results that the mean-variance analysis can establish can be also
established by rigorous analysis for any strictly-concave U(W) with convergent
first moment. Here are a few representative theorems.

THEOREM 1. As between (i) safe cash or holding a safe security with yield 1 + r
and (ii) holding a risky security with positive variance, one will never hold the risky
security if its mean return is not greater than 1 + r. If its mean return, u,, is greater
than 1 + r, one must prefer to hold some of it, i.e., w}* > 0, to holding cash alone.

7 For the independence case where p(z,, -, z,) = q,[z,;] -*- q,[2,], and each g,[z] has the Lévy—
Pareto distributions with the same o kurtosis and f skewness coefficient, being of the form
q(z] = q((z — p;)/e;], Samuelson [92] has shown how the Markowitz efficiency-frontier analysis of
quadratic programming can be generalized to a solvable concave programming problem,

n n n
min )) wie; subjectto Y wu; = p*, Yw, =1, w;20.
Wi o1 1 1

The resulting ¢* minimand forms with y* the efficiency frontier [u*, ¢*] = [u*, f(u*)], and the usual
portfolio theorem follows. Because a joint Lévy distribution is not convenient, one goes beyond
independence assumptions, in the Sharpe [103] and Fama [25] way, by considering returns with a
common component added to the Z;, namely Z; + ¢;Y and where Y satisfies the g[(Y — u,)/e,] form.
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THEOREM 2. A risky security, with mean greater than that of a safe security and
not less that that of any other security, and which is not perfectly correlated (in a
nonlinear or linear sense) with any other security, must be held in positive amount.

THEOREM 3. If a group of securities are independently distributed each with a
mean greater than that of the safe security being held, all must be held in positive
amount.

THEOREM 4. If security i has a greater mean than any other security, and if it
is independently distributed from all other securities, it must be held in positive
amounts.

THEOREM 5. If all risky securities are subject to a probability distribution
symmetric as between securities, i.e., with

(9.11) P(zy,z5,25, ) = P(z3,24, 23, )= Plz3, 25,20, ) = -0,

then they must be held in the same proportions, w¥ = 1/n.
On the other hand, special U(W) functions, which satisfy the condition

9.12) U/U"=a+ bW

are subject to some special decomposition theorems as discussed in Tobin [112]
and Cass and Stiglitz [11]. Included are the important cases

U=logW, U=W/y, 0#y<I,
(9.13)

U= —-e ", U = a’W — b*W?2
Often analysis is wanted for maximization of terminal wealth, Wy, after T > 1
periods of time, during which the probabilities repeat themselves independently.

Thus, we are sequentially to pick vectors [w(1)], [w{2)], ---, [w(T)] to give the
greatest E{U(Wy)}, where Wy is the random variable defined by

WT = WT—I ; Wj(l)Zj(T)a

(9.14) Wroy = WT—zZIW,Q)Z,(T— 1),

Wy =W, 21: wiT)Z{1),

where the vectors [Z(t)] are, for ¢t =1, ---, T, all independently distributed
according to a common probability distribution, namely,

©.15)  Plzy(1), -+, z(DIP[21(2), -+ 22)] - -+ P[z4(T), -+, z(T)].
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The exact solution is given by the Bellman-like dynamic programming sequence

maxf f U(WT—IZWJ(I)Z;')P(Zu"‘,Z,.)dZI'“dZn
0 0 n

wi(1)

-] U(Wr_lzw:f(l)zj)p(zl,-.-,zn)dzl---dz,,
0 0 1

= U(Wy_,), aconcave function,

maxf f UI(WT‘2ZW1(2)Z,')P(Z1,”',Z,,)dzl-~-dz,,
0 0 1

wi(2)

=[] Ul(wr_zzwf(z)z,-)p(zl,---,z,odzl-~~dz,,
9.16) 0 0 !
= U,(W;_,), aconcave function,

maxf f UT—l(WonJ(T)zj)p(zl, ooy zdzy - dz,
0 1

wi(T) Jo
=f f UT_I(WOZW;«T)zj)p(zl,~--,zn)dz1~~dz,.
0 0 1

= U W).

Note that this yields a best portfolio strategy at each instant of time as a function
of that period’s initial wealth.®

(9.17) wxT — 1) = fiW,; T — 1), i=1,--,n.

May I call to your attention for future use the fact that, when all the probability
distributions are symmetric in the various securities, the optimal portfolio shares
will involve equal dollar investments in all securities.

8 The problem in which one maximizes consumption over time, subject to stochastic return was
solved by Phelps [78]. Combining this with sequential portfolio making leads to problems like

T
max Y A7'ulc,] + UW,),

wilt), c(t)

where A < 1 and

¢ =W,_, Z":wj(t)zj(t) - W,
1

This has also been solved by Hakansson [36], [37], Leland [57], Mossin [74], Samuelson [96] and by
Merton [70], [71] for continuous t. The reader is alerted to some unsettled results when T is large.
Hakansson [38] suggested attention then go to the mean and variance of average return per period;
these can be surrogates for mean and variance of the logarithms of portfolio change, which Samuelson
[100] misleadingly said were “asymptotically sufficient” for the decision process—a correct statement
not as T — oo, but as n/T — oo, where n is the number of segments in which a fixed time T is divided,
and Merton’sinfinitely-divisible log-normals become valid. H. E. Leland (and, later, S. Ross and Merton—
Samuelson) proposed conditions under which T — oo leads to a “turnpike theorem” in which [w(?)]
— [w;] appropriate to W?/y, where y = {{WU"(W)/U'(W)] + 1} as W - co.
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THEOREM. The optimal T-period solution to (9.16), when P(z,, z,, )
= P(z,,2y,--+) = ---, the symmetric case, involves

(9.18) wiT — 1) = 1/n.

The proof is immediate. Concavity of U guarantees that any local extremum is
a global maximum. By a legitimate use of the principle of sufficient reason, a
deductive symmetry argument, we know there is no reason to invest more in
one security than another. This completes the proof.

Finally, mention may be made of the special case where

(9.19a) UW) =Wy, 0#£i<l,
or
(9.19b) U(W) = log W.

This is the family of constant-relative-risk aversion, as discussed by Pratt [79]
and Arrow [3], a special case of (9.12) that leads to portfolio fractions and other
decisions that are proportional to the wealth level. That is, in (9.17)

(9.20) wHT — 1) = f(1;1), t=0,---,T— L

Warning: f(1;1) will, generally, be different for each different 7. Only for
y = 0, will f(1; 1) approach the solution given by the case where E{log W} is the
maximand. I must mention the Williams [114], Latané [54], Kelley [47], Brieman
[10], Markowitz [65], Hakansson [38] and Thorp [110] discussions which seem
almost to recommend that, for T — oo,

(921) f;(Wa T) = f;(l 5 l)logW7

which are the portfolio weights that maximize E{log W,} at each single stage—
yetsuch proposals cannot be valid for rigorous E{ U(W;)} maximizers. Such Latané
strategies do, for T sufficiently large, give a result that is with indefinitely great
probability, i.e., P — 1, going to be better than the results of any other uniform
strategy. But that is another matter, quite different from expected utility maxi-
mizing, as Samuelson [88], [100] has argued. Note that, for general U(W) and
P(zy, - --), no uniform w§¥ strategy is optimal at every time period.

Let me put this apparatus to work to discuss a problem relevant to a more
complete general equilibrium determination. Jen [42] reviews writings by those
~ such as Jensen [43], Cheng and Deets [12], Evans [24], Latané and Young [55],
devoted to the question: Suppose you begin by putting equal dollars in all
securities. At the end of one period, should you just continue to hold the now-
unequal dollar amounts? Or transaction costs aside, is it better to rebalance your
portfolio back to equal proportions? Which is better, buy-and-hold (BH) or con-
tinual rebalancing of portfolio to equal proportions (CRE)?

This question can be given a definite answer in that one case where equal
proportions are to be recommended in the beginning, namely when the joint
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distribution of price rations is symmetric in the different stocks in each period and,
for simplicity, independent of earlier period outcomes. As was shown earlier in
(9.18), under these circumstances CRE is better than any other strategy for a
concave utility maximizer. Thus, CRE does beat BH.

However, the asserted primacy of equal-proportions proves too much. How
can everybody hold as much of dollars in General Motors as in Ford? One
company is bigger than the other and there will not be enough to go around for
equal-proportions holdings. The set up, looked at from a general equilibrium
view in which everybody acts the same way, is self-contradictory. Even if Ford
and GM start out with equal total values, under a symmetric P(z,, - - - , z,) distribu-
tion they must be expected to become unequal after one period, and increasingly
unequal as T becomes large. Clearly the assumption of P(z,, - - - , z,) as a symmetric
function has got to go in a good general equilibrium model.

Of course, in real life people differ: perhaps risk-averse widows will begin to
buy the sluggish AT&T’s and young® M.D.’s with sporting blood and fat prospects
will buy the small and volatile stocks ; and securities will get repriced so as to make
them all be held.

However, if we seek a general equilibrium model of rock-bottom simplicity,
it will involve all investors being alike. And then each will want, in effect, to
pursue a buy-and-hold strategy, each of N people owning 1/N of all there is to
be held. Is there any model which can rationalize such a buy-and-hold philosophy?
(Note: I rule out the merits of buy-and-hold when you are learning inductively
which stocks have the better expected value and are astutely letting your winners
ride and become an increasing fraction of the total. I shall pretend that all similar
men know the P(z,, - - ) functions that each faces.)

Here then is a new idealized model which does seem to meet the challenge
of making buy-and-hold motivated even in a world where people are alike in
their information and probability expectations but possibly different in their
wealths and degree of risk-aversions.

Axiom. Call all outstanding shares of each company one unit, so that the
prices of such units {X,} are merely the total outstanding values of those stocks.
(Splits are ignorable as dividends will be for the present terse exposition.)

I posit that each price, the high price for large GM or the low price for American
Motors or some new firm, is proportional to the number of independent *profit-
centers” or “molecules” in the firm. Each price changes as each molecule or
profit-center in that firm proliferates into 0, 1, 2, - - - succeeding molecules accord-
ing to probability laws which are the same for every molecule in society regardless
of in which firm any one molecule may happen to belong.

“What,” you will ask, “could the size of an auto firm grow indefinitely, going
beyond that fraction of the capitalized wealth of society that auto capacity could
ever hope to attain under present tastes for autos and nonautos?”

Such a question holds no terror for the present model. If the age of conglomerates
had not already dawned, the notion of companies which have profit centers that

® In Samuelson [96], it was shown that ““businessman’s risk” cannot be explained by a tendency to
be more venturesome when you maximize terminal W with T large, in the sense that one with U(W)
= W'}y or log W will have uniform (w¥) unless inabilities to borrow or other realistic factors are
introduced into the idealized setup.



MATHEMATICS OF SPECULATIVE PRICE 31

are not tied to any one industry but are free to go everywhere and to compete in
search for a share of the consumer’s dollar wherever spending tastes may direct
such dollars—such a notion would have had to be invented to dramatize the present
firm-as-collection-of-unrelated-molecules model. In the present model we are back
to symmetry of results to be expected, but the symmetry is not with respect to equal
dollars invested in each security but is rather nicely gauged so that, by the principle
of sufficient reason, every concave utility maximizer will be motivated to make
all of his portfolio proportions faithfully mirror all that there is to buy of total
social wealth. If GM is three times the size of Ford, each of us will want to hold
three times as much of GM as Ford, ie., w/w; = 3, and each w; is directly pro-
portional to the total values of outstanding stocks.

Call Z; the number of new profit-centers or molecules that the jth present
molecule will give rise to; then, independently of the firm in which any molecule
may be, we face a symmetric probability distribution

P(...’Zi’...;...’Zj’...;...;...)EP(...’Zj’...;...’Zi’...;...;...)’

where the placing of the semi-colons indicates the boundaries of the firms, GM,
Ford, GE, etc. A special case of this symmetry would be where each molecule is
subject to an independent distribution similar to that of any other molecule,
whether inside the same firm or outside of it ; or, perhaps, the case where each such
molecule is subject to independent variation except for a common business-cycle
component of the Sharpe type. In the case of complete independence, consider
two firms of unequal size, one containing say M, molecules and the other M,
molecules. Let Y, and Y, represent, respectively, the random variables depicting
the ratio of X, /X, for the respective firms. Then in terms of the following nota-
tional convention, we can prove the theorem that the portfolio proportions will
indeed be proportional to outstanding market value:

g

Py(y) = P(y), Py(y) = P,(y) * Py(y) = f Pi(y — w)dPy(u),
0

g

Py(») = Py() * Py 1(y) = f Py(y — u)dPy_ (1.
0

In terms of this notation the probability distribution for Y}, Y,, - - - pertaining to
firms of respective number of molecules and respective market values M, M,, - - -
will be of the form

PM,(J’1)PM2(J’2) cee.

And now it is easy to show that the resulting optimal proportions become pro-
portional to firms’ outstanding total market values or proportional to the M’s.
This completes the description of the molecular model that can rationalize a
buy-and-hold-all-there-is-to-hold philosophy. Rebalancing to equal proportions
or adhering to any uniform proportions would definitely be suboptimal. (Remark :
A Latané—Kelley expected-log maximizer would, in this environment, not adhere
to uniform proportions but would rather do what every rational concave-utility
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maximizer would be doing even if his name were not Bernoulli or Weber or
Fechner, namely, he would be buying his quota of outstanding total market value.)

Is there not a possible objection to this model—I mean beyond the usual
intrusions of the reality of market imperfections, transaction charges, informational
disagreements, and so forth? What will happen to the size distribution of firms
over time? One would have to work out the answer for each different kind of
symmetric function. But it is intuitively evident that the spread of firm size would
widen through time. An ergodic state would not be achieved, unless we altered
some of the assumptions of the model. The reader must decide whether the bulk
of the evidence suggests that a model of dispersing firm size should be admired
or rejected, and must be referred to works on the stochastic dynamics of industry
size, such as that by Steindl [107].

10. Speculative stochastic price. A survey cannot be encyclopedic. Let me
bring this bird’s-eye view to an end by discussing, all too briefly, one self-contained
model which does settle the economic issue of whether or not prices form a
martingale or merely a stationary time series with a well-defined ergodic state
as the resultant of Brownian vibrations around a level of equilibrium.

I consider an idealized model of a single spot commodity, like that analyzed
in Samuelson [86], [87], [99]. The crop comes in intermittently, say every autumn;
at first we may ignore all stochastic variations and let the crop be an arbitrary
time sequence (--- , H,, H,, ,, - - -). At first we may ignore all storage and suppose
that consumption, C,, does equal the harvest, H,, in every period. Each C,, so to
speak, gets auctioned off for what price it will bring, along a conventional demand
function

(10.1) P =P[C]. P[C]<O.

Now let the crop be a stochastic variable, subject for simplicity to a time-
independent uniform probability distribution

(10.2) Prob {H, < h} = F(h),  F(hy,hy,--) = F(h)F(h,) -+~

Obviously price will vibrate stochastically around the mean level P[E{H 1.
Obviously, P(t) will not be a martingale or, in any meaningful sense, a semi-
martingale. Obviously, the conditional probabilities will be extremely simple,
being of the form

(10.3) Prob {P, < p|P,_,, P,_,,---} = I(p),  TI(P[h]) = F(h).

Now let us introduce into the problem the possibility of storage and arbitrage
through time. Suppose that there are interest costs reckonable at r per period and
that all physical storage costs can for simplicity be subsumed under the assump-
tion that if I carry over Q, in grain from the end of ¢ for use or sale in the period
t + 1, only a fraction a of that will become available in the next period, namely
aQ,, to be added to the new harvest H,, ;.

Samuelson [87] shows by standard methods that, in the absence of stochastic
variations, the equilibrium pattern of prices is determined by the following
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nonlinear difference equations and inequalities :
(1 +n~'aPH,s, + aq, — q,+,] — P[H, + aq,_, — 4] £ 0,
(104) q{(1 +r)"'aP[H,,, + a4, — 4,+,) — P[H, + aq,_, — q]} =0,
t=0,1,2,---, T, q_y,qr specified,

with determinable solutions for the unknowns q¢,q¢, -, gr—15P0>P1s " s P1-
Actually, if U'[C] = P[C], these conditions can be given a Kuhn-Tucker dynamic
programming interpretation

T
(10.5) max Y (1 4+ r)"'U[H, + aq,_, — q]

qo,**»4qT -1 Q

with Hy,H,, .-+, Hr;q_,,q prescribed.

It is further suggested how to handle the case of stochastic harvests. An obvious
generalization of the nonstochastic programming problem of (11.5) is the following
dynamic stochastic programming problem:

JrlHo +aq_;] = max E{Z(l + rfU[H, + aq,_, — qt]}
(106) 90,""",4T - 1
q, 20, q_,,qg prescribed.

The solution to this is given by the usual Bellman recursive technique and leads
to the following general type of condition:

oy '"aE{P,,} =P, 20, q{(l+n"'aE{P.} - P} =0,

t=0,1,.---, T.

More specifically, solving the optimal control problems gives us a decision function
for optimal carryover strategy of the form

qt-n=fH,_y+aq,_,_1;97), 0=0f(x;q9p)/0x £ 1,

(10.8) .
’lirgf,,(x;qT) = f(x), 0sfx)s 1.

When we substitute these strategy functions f, into the determining conditions
of the problem, we emerge with a well-defined stochastic process. With T — oo,
we can calculate the conditional probabilities

Prob {P,,; < pIP, = po} = II;(p;py), -+, Prob{P,,, < p|P, = po} = IL(p; po),
k=1,2,---,

Prob {P,,, < p|P, = py, P_;= P—j} = ILi(p; po)»
(10.9) lim IT,(p; po) = Il(p), an ergodic-state probability,
k—

E {Pudpo} = fo p dTI(p).
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This model portrays in a satisfying way many of the properties we should wish
for a stochastic model of commodity prices. It fails to “explain” the Keynes—
Houthakker “‘normal backwardation” of futures prices; it fails to explain “con-
venience yields” of inventory and “negative carrying charges” for carryover.
The first failure can be removed, I believe, as soon as we introduce the realistic
fact that some people have a comparative advantage in producing and holding
this grain; the rest of the community has an interest in consuming it. The diversity
of their interests ought to lead to normal backwardation. Interestingly, the
magnificent Arrow finding, that there must be as many ‘“‘securities” as there are
possible states of nature if Pareto-optimality is to hold, suggests that organized
markets do not go all the way in doing the job of optimally spreading risks among
producers, consumers and well-informed speculators. See Arrow [2] and Debreu
[21, Chap. 7].

I have discovered inductively that one can only scratch the surface of stochastic
speculative price in any one lecture.

Acknowledgment. I owe thanks to Professor Robert C. Merton of MIT for
the valuable Appendix on continuous-time analysis, and for other stimulus; also
thanks to Jill Pappas and K. Iwai for editorial aids.

APPENDIX: CONTINUOUS-TIME SPECULATIVE PROCESSES
ROBERT C. MERTON

Let the dynamics of stock price x be described by the stochastic differential
equation of the It6-type?!

(A.1) dx = axdt + oxdz,

where « is the instantaneous expected rate of return, o is the instantaneous standard
deviation of that return, and dz is a standard Gauss—Wiener process with mean
zero and standard deviation one. It is assumed that « and ¢ are constants, and
hence, the return on the stock over any finite time interval is log-normal.

Suppose we are in the world of the Samuelson 1965 theory [90] where investors
require an instantaneous expected return f to hold the warrant and B is constant
with B = a. Let W = F(x, ;0% a,, B) be the price of a warrant with exercise
price a and length of time until expiration t. Using 1t6’s lemma,*? the dynamics
of the warrant price can be described by the stochastic differential equation

(A2) dW = F, dx + F, dt + 1F,,(dx),

where subscripts denote partial derivatives. Substituting for dx from (A.1) and

Al For a complete discussion of It6 processes, see the seminal paper of It6 [40], It6 and McKean [41]
and McKean [69].

A2 See McKean [69, pp. 32-35 and 44] for proofs of the lemma in 1 and n dimensions. For applica-
tions of It6 processes and It6’s lemma to a variety of portfolio and option pricing problems, see Merton
[70], [71] and [73].
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noting that dt = —dr and (dx)* = g%x? dt, we can rewrite (A.2) as
(A.3) dW = [36°x*F,| + axF, — F,]dt + oxF, dz,
where [30°x?F,; + axF, — F,]/F is the instantaneous expected rate of return on
the warrant and oxF,/F is the instantaneous standard deviation. Applying the
condition that the required expected return on the warrant is § to (A.3), we derive
a linear partial differential equation of the parabolic type for the warrant price,
namely,
(A4) 0 = 36’x*F,| + axF, — BF — F,
subject to the boundary conditions for a “European” warrant:

(@) F(0,7;0%a,a,B) =0,

(b) F(x,0;0% a,a, f) = max [0, x — a].

Make the change of variables T = o1, S = x ¢*'/a, f = F ¢’*/a, and substitute
into (A.4) to obtain the new equation for f,

(A.5) 0= %Szfu -/
subject to
(@) f(0,7T) =0,

(b) £(S,0) = max [0, S — 1].

By inspection, f is the value of a “European” watrant with unit exercise price and
time to expiration 7, on a common stock with zero expected return and unit
instantaneous variance, when investors require a zero return on the warrant, ie.,

(A.6) f(8,T)=F(S,T;1,1,0,0)

which verifies the homogeneity properties described in (6.11). To solve (A.5), we
put it in standard form by the change in variables y = log S + 3T and ¢(y, T)
= f(S, T)/S to arrive at

(A7) 0= %d’u - ¢2

subject to

@ lol =1,

(b) ¢(y,0) = max[0,1 — e~?].
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Equation (A.7) is a standard free-boundary problem to be solved by separation of
variables or Fourier transforms.A3> Hence, the solution to (A.4) is

[ 1(Z = (o — L6?)0)?
F=e———f (xez_a)exp I:__( (az 30 )T)]dz
\/m log(a/x) 2 pe
o e ]
v

—a e—mN[Iog (x/a) + (2 = %ozn}

o/t

(A.8)

which reduces to (6.11)46.12) when f = a.

The analysis leading to solution (A.8) assumed that the warrant was of the
“European” type. If the warrant is of the “American” type, we must append to
(A.4) the arbitrage boundary condition that

(Adc) F(x,t;0%a,a,p) 2 F(x,0;6% a,a, p).

It has been shown 4 that for f = «, (A.4.c) is never binding, and the European
and American warrants have the same value with (A.8) or (6.11)6.12) the correct
formula. It has also been shown that for B > «, for every 7, there exists a level of
stock price, C[t], such that for all x > C[z], the warrant would be worth more if
exercised than if one continued to hold it (ie., the equality form of (A.4.c) will
hold at x = C[1]). In this case, the equation for the warrant price is (A.4) with the
boundary condition

(A4c)  F(C[t],t;0%a,a,B) = C[t] —a appended and 0= x =< C[1].

If C[t] were a known function, then, after the appropriate change of variables,
(A.4) with (A.4.c’) appended, would be a semi-infinite boundary value problem
with a time-dependent boundary. However, C[t] is not known, and must be
determined as part of the solution. Therefore, an additional boundary condition
is required for the problem to be well-posed.

Fortunately, the economics of the problem are sufficiently rich to provide
this extra condition. Because the warrant holder is not contractually obliged to
exercise his warrant prematurely, he chooses to do so only in his own best interest
(i.e, when the warrant is worth more “dead” than “alive”). Hence, the only
rational choice for C[t] is that time-pattern which maximizes the value of the
warrant. Further, the structure of the problem makes it clear that the optimal
C[ -] will be independent of the current level of the stock price.

A3 For the separation of variables solution, see Churchill [13, pp. 154-156], and for the Fourier
transform solution, see Dettman [22, p. 390].

A4 Samuelson [90] gives a heuristic economic argument. Samuelson and Merton [95] prove it under
more general conditions than those in the text. An alternative proof, based on mere arbitrage, is given
in Merton [73].
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In attacking the difficult f > a case, Samuelson [90] postulated that the extra
condition was “‘high-contact” at the boundary, i.e.,

(A9) F,(C[t],t;0%a,a,8) = 1.

It can be shown that (A.9) is implied by the maximizing behavior described in the
previous paragraph. Inanappendix to the Samuelson paper, McKean [68, p. 38-39]
solved (A.4) with conditions (A.4.c’) and (A.9) appended, to the point of obtaining
an infinite set of integral equations, but was unable to find a closed-form solution.
The problem remains unsolved.

In their important paper, Black and Scholes [8] use a hedging argument to
derive their warrant pricing formula. Unlike Samuelson [90], they do not postulate
a required expected return on the warrant, 8, but implicitly derive as part of the
solution the warrant’s expected return. However, the mathematical analysis and
resulting needed tables are identical to Samuelson [90].

Assume that the stock price dynamics are described by (A.1).A Further, assume
that there are no transactions costs; short-sales are allowed; borrowing and
lending are possible at the same riskless interest rate, r, which is constant through
time.

Consider constructing a portfolio containing the common stock, the warrant
and the riskless security with w, = number of dollars invested in the stock,
w, = number of dollars invested in the warrant, and w; = number of dollars
invested in the riskless asset. Suppose, by short sales, or borrowing, we constrain
the portfolio to require net zero investment, i.e., Y > w; = 0. If trading takes place
continuously, it can be shown A® that the instantaneous change in the portfolio
value can be written as

dx aw
(A.10) wl(? — rdt) + WZ(_W— - rdt),

where the constraint has been eliminated from (A.10) by substituting
wy; = —(w,; + w,), and so, any choice of w, and w, is allowed. We can substitute
for dx/x and dW/W from (A.1) and (A.3), and rearrange terms, to rewrite (A.10) as

ALl [w,(@ — r) + wGo?*x*F,, + axF, — F, — rF)/F]dt
+ [wy0 + wyoxF,/Fldz.

Note that w, and w, can be chosen so as to eliminate all randomness from the
return; i.e., we can choose w, = w¥ and w, = w%, where

(A.12) w¥/w¥ = —xF,/F.

AS The assumptions and method of derivation presented here are not those of Black and Scholes [8].
However, the method is in the spirit of their analysis and it leads to the same formula. For a complete
discussion of the Black and Scholes model and extensions to more general option pricing problems,
see Merton [73].

A6 See Merton [70, pp. 247-248] or Merton [73, § 3].
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Then, for this particular portfolio, the expected return will be the realized return,
and since no net investment was required, to avoid positive “arbitrage” profits,
this return must be zero. Substituting for w¥ and w¥ in (A.11), combining terms,
and setting the return equal to zero, we have that

(A.13) = 162x?F,, + rxF, — F, — rF.
2 11 1 2

Equation (A.13) is the partial differential equation to be satisfied by the equili-
brium warrant price. Formally, it is identical to (A.4) with “f = o = r,”” and is
subject to the same boundary conditions. It is important to note that this formal
equivalence does not imply that the expected returns on the warrant and on the
stock are equal to the interest rate. Even if the expected return on the stock is
constant through time, the expected return on the warrant will not be A7 ie.,

(A.14) Bx,t)=r+ i11:_:1(& —r).

Further, the Black—Scholes formula for the warrant price is completely independent
of the expected return on the stock price. Hence, two investors with different
assessments of the expected return on the common stock will still agree on the
“correct” warrant price for a given stock price level. Similarly, we could have
postulated a more general stochastic process for the stock price with o itself
random, and the analysis still goes through.

The key to the Black—Scholes analysis is the continuous-trading assumption
since only in the instantaneous limit are the warrant price and stock price perfectly
correlated, which is what is required to form the “perfect” hedge in (A.11).
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