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The Volatility of Long-Term Interest Rates and
Expectations Models of the Term Structure

Robert J. Shiller

University of Pennsylvania and National Bureau of Economic Research

Models which represent long-term interest rates as long averages of
expected short-term interest rates imply, because of the smoothing
implicit in the averaging, that long rates should not be too volatile.
The volatility of actual long-term interest rates, as measured by the
variance of short-term holding yields on long-term bonds, appears to
exceed limits imposed by the models. Such excess volatility implies a
kind of forecastability for long rates. Long rates show a slight ten-
dency to fall when they are high relative to short rates rather than
rise as predicted by expectations models.

I. Introduction

An argument that often seems to be implicit in popular criticisms of
rational expectations models of the term structure of interest rates is
that long-term interest rates are too “volatile” to accord with the
averaging inherent in the models. With these expectations models,
the long-term interest rate can be approximately represented as a
long average of rationally expected future short-term rates plus a
liquidity premium term. Long linear moving averages tend to smooth
out the series averaged, and this tendency would seem to extend to

This paper was supported by the Federal Reserve Bank of Philadelphia, while I was
visiting scholar there, and by the National Science Foundation under grant #SOC
77-26798. The views expressed here are solely mine and do not necessarily represent
the views of the supporting agencies. I am particularly indebted to Franco Modigliani,
who first pointed out to me an example of the kind of regression which appears here in
table 3. The paper also benefited from discussions with Benjamin Friedman, Gary
Gillum, Stephen LeRoy, Richard Roll, and many others. Leslie Appleton and Edward
Hendricks provided research assistance.
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Fic. 1.—U.S. long-term interest (R) (solid line) and short-term interest rate (r)
(dotted line) quarterly, 1966:1-1977:11. See Appendix B, data set 1.

nonlinear averaging schemes inherent in alternative versions of the
model. In addition, if rational expectations represent a conditional
mean or “conditional average,” they should tend to change dramati-
cally only when important new information arrives, which could not
be too often. This tendency would seem to extend to alternative
measures of conditional central tendency which might be used to
represent public expectations. It would thus seem that observed vol-
atility of interest rates would have to be ascribed to factors not usually
represented in these models. The liquidity premium is usually de-
scribed as reflecting public attitudes toward and perceptions of risk
and is usually assumed constant or modeled as slow moving.
Observed long-term interest rates series are not much smoother
than short-rate series, as can be seen, for example, in figure 1, which
displays a long-rate series for high-grade bonds with over 20 years to
maturity (solid line) and a 4-6-month short-rate series (dotted line).!
As a result of the choppy behavior of long-term interest rates, the
short-term holding yield on long-term bonds, which is related to the
percentage change in the long-term interest rate, has a very high
variance. Figure 2 shows the approximate annualized one-quarter

' This is a plot of data set I, described in Appendix B.
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Fic. 2.—Approximate one-quarter holding yield (H) on the long-term bonds from
fig. 1 (solid line) and the short-term interest rate (r) (dotted line) quarterly, 1966:1—
1977:11. See Appendix B, data set 1, and n. 2.

holding yield on long-term bonds, as computed from the long-term
interest rate series from figure 1 (solid line),? and the same short-term
interest rate (dotted line). Note that the vertical axis in figure 2 has
smaller units than that of figure 1, because the one-period holding
yield is so volatile. The standard deviation of the holding yield is in
fact 18.6 percentage points, and the holding yield ranges in this
sample from —29 percent to +42 percent. Recent U.K. data also show
great short-term holding-yield volatility. For British Consols, for
which the time to maturity is infinite, the standard deviation of the
annualized quarterly holding yield from 1956:1 to 1977:11 is 25.8
percentage points, and the holding yield ranges from —53 percent to
+108 percent.? Culbertson (1957), in his well-known critique of ex-
pectations models of the term structure, remarked in connection with

* Computed using expression (5), below, where R{" is the long-term interest rate in
fig. 1 (divided by 400) and R{}" is the long-term interest rate for the following quarter
(divided by 400), and C is taken as R{". After computation, the holding yield is
remultiplied by 400 to convert to annual percent. See n. 9 below concerning approxi-
mation error in this measure of holding yield.

* Computed from the expression in n. 7 below without the approximation error
referred to in n. 2, using data set 5 described in Appendix B. The range divided by
standard deviation is high, indicating heteroscedasticity as discussed below.
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a graph of holding yields like our figure 2, “what sort of expectations,
one might ask, could possibly have produced this result?”

My purpose here is to develop the robust properties of a broad class
of expectations models for the random behavior of long-term interest
rates, and to examine whether observed rates are too volatile to
accord with these models. LeRoy and Porter (1979) have inde-
pendently shown some ways of evaluating such a model in the context
of their analogous claim that stock prices are too volatile to accord
with a model which makes stock prices equal the present discounted
value of expected earnings. I have also found support (Shiller 1979)
for a similar claim regarding common stock price volatility using
methodology that draws on this paper. The volatility of bond prices is
in a sense more basic an issue than that of stock prices, since (high-
quality) bond-price movements depend only on variations in the rate
of discount, whereas stock prices can change due either to a change in
the rate of discount or to a change in expected earnings.

Any claim that long-term interest rates (or, in the case of the other
papers, stock prices) are too volatile contradicts a large literature
confirming “market efficiency” or “random-walk” behavior of certain
sequences. The claim that bond markets are efficient or that long-
term interest rates are approximately a random walk was made, for
example, by Granger and Rees (1968), Bierwag and Grove (1971),
Laffer and Zecher (1975), Phillips and Pippenger (1976), Sargent
(1976, 1979), Mishkin (1978), and Pesando (1978). However, we shall
see that even if long-term interest rates are much too volatile, conven-
tional tests of “market efficiency” may be weak. Other studies have, in
any event, provided evidence contrary to some forms of simple mod-
els of' bond-market efficiency (Roll 1970; Sargent 1972; Cargill 1975;
and Fama 1976), so the claim that market efficiency fails due to excess
volatility should not be regarded as highly improbable based on past
literature.

In Section II below I will discuss the basic linearized model and
show how it can be derived as an approximation from a number of
different versions of the expectations model. In Section III I will
derive some inequality restrictions which show in what sense the
expectations model implies long-term interest rate series must be
stable and smooth, and 1 will contrast this with observed behavior of
long rates.

In Section 1V I test some market-efficiency restrictions by running
simple regressions. If long rates are too volatile to accord with the

*See Culbertson (1957, p. 508). Culbertson, however, did not clearly state the
argument we make here.



1194 JOURNAL OF POLITICAL ECONOMY

theory, then they must also be forecastable in a way inconsistent with
the theory, and this is tested here. Implications of the model for the
spectral density of interest rates are derived in Appendix A.

II. A Linearized Expectations Model

The linearized model we shall study relates the n-period interest rate
(vield to maturity on n-period bonds) R{" to a weighted average of
expected future one-period (short-term) interest rates ry, vy, « - -

R = H z’yKEr(THK) + &, (n
Y K=o

where y is a constant 0 < y < 1 and ®, is a constant “liquidity
premium.”” Here, E, is the expectations operator conditional on in-
formation available at time ¢, which includes all current and lagged
interest rates. Linear models relating long rates to expected future
short rates should be familiar to most readers; however, the precise
form I have chosen here requires some explanation, since the form is
important for the analysis which follows. Most simple linear term
structure models relate long-term interest rates to an unweighted
simple average of expected short rates. Those models are indeed
appropriate for pure (no coupon) discount bonds. In contrast, this
equation involves weights which describe a truncated exponential (or
“Koyck”) distribution scaled so that the sum of the coefficients is one.
Expected short-term interest rates in the near future carry more
weight in determining the long yield than do expected short-term
interest rates in the more distant future. We will sety = 1/(1 + R), and
then (1) relates R{"™ to the “present value” of future short-term inter-
est rates discounted by R. This model is intended for coupon-carrying
bonds which are selling near par, or for consols with n = . Since
longer-term bonds which are available do carry coupons, and since
yield series for bonds selling near par or for consols are available, this
expression suits our purposes.

Note that our model is not specific to a particular time interval
chosen, for example, whether quarterly or annual. If the model holds
for a given time interval, then it holds for a higher time interval as
well. By regrouping terms in (1) where m is replaced by mn and then
using (1) again where n is replaced by m, it is easily verified that:

R = =2 S R + @,

K=0

> Throughout this paper, superscripts are distinguished from exponents by
superfluous parentheses. Here r, = R{". I use lowercase r, to denote the one-period
rate, for notational convenience. Later, I shall use unsuperscripted uppercase R to
denote the perpetuity rate, i.e., R, = R{™.
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where y = y" and &, =, — d,. Hence, mn-period rates are related
to a truncated Koyck average of expected m-period rates over the next
n time intervals, where time intervals are m periods long.
Expression (1) is a linearization of any of a number of versions of
the rational expectations model as applied to bonds which carry
coupons and mature in n periods. To see this, we begin with a few
definitions. For coupon-carrying bonds, for which we normalize the
principal at maturity at 1.00, and for which coupon rate per period is

denoted by C, the present value V{" of future coupons and principal is
defined by:

n—1 K n—1
vir=c > [T +r + [ A +rp) = v, 2)
K=0j=0 =0

where r} is defined as the vector (r,, 7,41, ..., 7i40—1), and V(- ) will refer
to the present value function here defined. I have assumed here that
coupons are paid once per period starting after one period. The first
term in the expression is the present value of the stream of coupon
payments; the second term is the present value of the payment of
principal ($1.00) at maturity.

The yield to maturity or long-term interest rate R{"’ on an n-period
bond is determined by the requirement that the price P{"" of the bond
is the present value of coupons and principal discounted by R{"; that
is,%

RW — C
P(’") = V(")[R(’")] = RC;‘M) + R;n)[tl + R;«")]" ‘ (3)
If R = C, P{” = 1, and conversely. Such bonds, whose price today
equals the principal paid at maturity, are selling “at par.” Since new
bonds are issued at par, our newly issued and recently offered bond
yield averages refer to such bonds.

The one-period holding yield H{" is equal to the capital gain P{;"
— P{" (note than an n-period bond at time ¢t becomes an [n — 1]-period
bond at time ¢ + 1) plus the coupon payment C at the end of the
period divided by the price P at time ¢ (to convert to a rate of
return):”’

P(n—l) _ P(n) + C
H = = P('")r : 4)

S The V" [R{"] refers to the function V" in which R{" is substituted for each of r, r,4,,

., Tien—1; R is the single real positive root to eq. (3).

"It has been pointed out that if numerator and denominator in the ratio (4) are
jointly normally distributed, the ratio will not have a finite variance. One should not be
misled by this fact. If the mean of the denominator is large relative to its standard
deviation, the distribution function of the ratio approximates the normal. Anyway, the
denominator cannot be normally distributed since price cannot be negative.
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This may be rewritten, using (3), in terms of the yields to maturity R{"™
and R{47":8

¢ RV - C 1/
(n) —
Hl [C + R;g_-l—l) + R;g_l—l)[l +R;¢;1)]",1
C R® —C |
+ - 1. 5
lR(’n) R;’”[l ‘+‘R}")]" (5)

The simplest way to motivate expression (1) is to consider a model
which relates the expected one-period holding yield to the short-term
interest rate:

E[H{"] =r + ¢™, (6)

where ¢ is a constant. In the one-period Sharpe-Lintner mean-
variance capital asset pricing model, as applied to the bond market by
Roll (1971), McCallum (1975), and Friend, Westerfield, and Granito
(1978), ¢'» will equal B™[E (R,,) — r], where R, is the return on the
market portfolio and B8 is equal to the covariance between H{" and
the return on the market portfolio divided by the variance of the
return on the market portfolio. The capital asset pricing model itself
does not necessarily imply that ¢ is constant, although the usual tests
of the capital asset pricing model as in Friend and Blume (1970) or
Black, Jensen, and Scholes (1972), as well as the above cited applica-
tions to the bond market, assume this is true, at least over certain time
intervals. If we make this assumption, then substituting (5) into (6)
gives us a first-order nonlinear rational expectations model relating
R™ and r. The nonlinearities, however, create fundamental problems.
Our approach will be to linearize expression (5) around R{™ = R{#7V
=R =C (i.e., take a Taylor expansion truncated after the linear term)
to give us a linearized holding yield /¢ which will approximate H{".
This procedure gives us:?

#If the bond is a perpetuity, n = * and expression (5) reduces to H, = R, —
AR!+1/RI+I-

? The approximation error introduced by the linearization (7) is not large. The cor-
relation coefficients between H and H for data sets 1-6 as computed in table 1 are .993,
994, .990, .997, .947, and .978, respectively. Models which describe pure discount
bonds and which equalize expected log holding yields seem to avoid the necessity for
such approximation. That apparent advantage is illusory, however, for if these models
are to be similarly robust to variations in assumptions, as discussed below, the same sort
of linearization arguments must be made. Another approximation error, which affects
our estimated holding-period yields based on newly issued or recently offered yield
series, even without the linearization, is introduced by my practice of substituting the
yield average at time ¢ for R{” and the yield average at time ¢ + 1 for R{:;" in expression
(5) or (7). The problem with this practice is that the maturity date and coupon are not
kept constant from period to period in the yield averages, and, in fact, coupons roughly
equal current yields. The error introduced by failing to keep the maturity date constant
is certainly negligible. There is no measurable difference in yield between, e.g., 25-year
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R(n) — Y R(n—l)

1 - Yn ’ (7)
where y, = {1 + R[1 — /(1 + R)" 7'} = y(1 — 4" /(1 — y).
Substituting this expression for H{® in place of H{® in (6) and rear-
ranging gives

T _
Ht —_

RI" = VE[RET) + (1= )l + ¢,

which is a first-order linear rational expectations difference equation
in R{" with variable coefficients. Such a model may be solved using
familiar methods in the rational expectations literature—as surveyed,
for example, in Shiller (1978)—by a method of recursive substitution
and with a terminal value condition for the maturity date. To do this,
one merely substitutes in place of £,R{%7" in the above expression the
expected value of the expression obtained by replacing ¢ by ¢ + 1 and
n by n — 1. After doing this, one then replaces EJ[R{i;?] in the
resulting expression, and so on. The resulting solution (involving a
terminal value condition that R!Y,_, = r,,_,, or that, in effect, the
price of the bond is 1.00 at ¢ + n) is expression (1) with

o, = 1 - V z N (8)
K=0

The model (1) is thus a consequence of the capital asset pricing model
under our linearization assumption coupled with the additional as-
sumption introduced by the terminal condition. The capital asset
pricing model itself is not (in contrast to model [1]) invariant to
changes in the time interval chosen, that is, to the investment horizon
of the representative investor. Roll (1971), in his capital asset pricing
model of the bond market, tried to find from the data what is the
“representative” investment horizon of investors. My linearization
sidesteps this problem.

The linear expression (1) may also serve as an approximation to a
number of other versions of the expectations model of the term
structure, so long as interest rates do not vary too much. The model
discussed above, in which expected one-period holding yields H{"
equdl the short rate plus a constant, may be written as P’ = E V(7;
+ @), where ¢ = [¢™, ¢V, ..., $V]. An alternative model is one in
which forward rates equal expected future spot rates plus a liquidity

bonds and 25Y-year bonds. A bigger error is introduced by the fact that the coupon
rate is not kept constant between ¢ and ¢ + 1 in the yield averages. There is a
relationship between coupon and yield for individual bonds, as a study by Shiller and
Modigliani (1979) concluded. The relationship, which appears to be due to the differ-
ential taxation of capital gains versus income, works in the direction of causing our
measures f/ and A o slightly overstate actual holding yields by, in effect, purifying our
series from tax effects.
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premium, which can be written as Py = V"(Er; + ¢). Other models
include a model in which the expected total return from holding a
bond n periods (reinvesting coupons at the short rate) equals the
expected total return from investing in a sequence of shorts for n
periods,

P = E,[V“"(?;)ﬁl(l + rt+,~)]/E,[ﬁ (1+ m;)},

i=0 i=0

or a model in which the yield R{"” equals the expected yield from
holding a sequence of shorts which are liquidated in a manner which

matches the coupon principal payout structure of par long-term
bonds, P{"™ = V™W[R™], where

R = E,”l la+ r,H)*l]/ iﬁ (1 + )|

i=0 K=0j=0

All of these models have the common property that if the expecta-
tions operator is replaced by the number 1, the models reduce to P{"
= V™ (7, + ¢) for some vector ¢; that is, under perfect certainty they
reduce (except for the liquidity premium) to the present-value for-
mula itself. One can readily verify that if the present-value expression
(2) 1s linearized around r; = R = C, we get:

n—1

l K+1 _
Vim=1 - z (—1 " E) (ri+x — R).
K=0

If the variation in interest rates is not too large, all of the above
models can thus be written as'!

n—1

K+1 _
Pr=1 - (e - =) Bt 60 - R)
K=0

" The four special cases considered here are the four versions of the rational

expectations model of the term structure suggested by Cox, Ingersoll, and Ross (1977),
although their analysis considered only pure discount bonds. With coupon bonds, the
last model mentioned is a little more difficult to understand, since one cannot ex ante
plan such a sequence of shorts. Ex post, one can see how one could have invested $1.00
attime in shorts, withdrawn C dollars at each subsequent period, and be left with $1.00
at maturity. This model sets R{" to the ex ante expectation of the C which will achieve
this.

' All of these models can be written in the form P{" = g"(k,, ;) such that g"(1,7;) =
Vo(ry + d)) They can then be linearized using a two-step procedure. First, one
linearizes all subexpressions in g™ (£, ry) that do not contain (but are premultiplied by)
E;around r, + ¢ =71 + ¢V = L =14, + &" = R = C. The expectations
operator which premultiplies the expressions can then be brought inside (using the
distributive law), yielding an approximate expression for P} in E,[r, + ¢, E [r, +
" V) Edrin- + ¢V). The second step is to linearize this approximate expression
for P around E,[r, + ¢ = E,[r,4, + d)"""] = =Ern + V] = R C. This
yields an expression which is linear in b,( re+ d)) Smce we know thatg™(1, ) = V‘"’(r,
¢), we know that this linearization evaluated at b, =1lis |ust the linearization of V®(r; +
) around r, + " =y + PV =L =1y, + &Y = R = C. Hence, our linearized

g"(I,, r;) must be E, times the linearized V(r, + d))
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Similarly, the expression (3) for yield can be linearized around R{" =
R =C as
pp=1-1L11 d

R )
R (I +R)"

Equating the above two expressions and solving for R{ yields expres-
sion (1) withy = 1/(1 + R) and ® as given by expression (8). Expres-
sion (1) is thus an accurate characterization of all these rational ex-
pectations models of the term structure whenever the variation in
short-term interest rates is not too large. Our results below concern-
ing the relative volatility of long rates when compared to that of short
rates will be robust characterizations of all these models whenever the
level of interest rate volatility is not too high.

III. The Volatility of Interest Rates in the Linearized
Expectations Model

We will assume now for ease of exposition that the long-term bond
under consideration is a perpetuity, thatis,n = =, so thaty, = v, and
we will drop superscripts for R and H. Results here can be routinely
extended to the case of finite maturity bonds.

The simplest (albeit unrealistic) assumption one can make regard-
ing the formation of expectations is that there is perfect knowledge of
future one-period rates of interest and hence perfect knowledge of
future long-term rates as well. Then, R, = R¥, where R¥ is an “ex post
rational rate” analogous to that defined in Shiller and Siegel (1977)
given by:

RE=(1=7%) > ¥, (9)
K=0
which is just expression (1) forn = * and ® = 0 where the expecta-
tions operator has been dropped. Here Ri is a weighted moving
average of r,.

In figure 3 I have plotted the ex post rational rate R* based on the
short-rate series shown in figure 1 and the assumption that y = .98
and R* at the end of the sample equals the average short rate over this
sample. That is, I used R# = yR#, + (1 — y)r,, working backward
from the terminal value of R*. One notes the dramatically reduced
amplitude for this long-rate series R* compared with that actually
observed for the long-rate series R, and that the short-run movements
in the long rate R that we observed in figure 1 seem totally absent
from R*. This is entirely as we would expect, since we know (see
Appendix A) that the moving average in (9) reduces cycles of wave
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Fic. 3.—Ex post rational long-term interest rate (R*) (solid line), or what long rates
would have been if bonds were priced at present value with actual subsequent short
rates (r) (dotted line). See expression (9), text; short rate from fig. 1.

length 5-6 years by a factor of about .08 and of very short wave
lengths by a factor of about .01."2

One might also note a curious aspect of the behavior of the long-
term interest rate in figure 3. Whenever the long rate is above the
short rate it is rising, and whenever it is below it, it is falling. The
greater the spread between the long rate and the short rate the
greater the rate of increase of the long rate. The reason for this

" Figure 3 is based on a perpetuity assumption, but the basic result on the smoothing
of long cycles carries over to finite maturity bonds. Based on the gain of the filter in
expression (1) for n = 100 quarters and y = .98 (appropriate for this data set), we find
that for frequencies in the vicinity of 5 years amplitude is reduced by a factor of
-065-.085, roughly as illustrated in fig. 3. The reason for the similarity is clear: 100
quarters is close enough to infinity (.98" = .13) that the bond is approximately a
consol. Since R varies little, the linearization (7) which underlies (9) is quite accurate.
The exact yield of a consol whose price is given by the present value formula V(r + ¢)
(rather than our linearized approximation) under the perfect-certainty assumption and
an assumption about @ consistent with the R chosen in fig. 3 looks virtually indistin-
guishable, differing (except for ®) by no more than one basis point throughout from
the series plotted here. If the linearization (7) is not accurate enough over the range
that actual R varies, then that fact itself is a disconfirmation of the model, not of our use
of the linearization in describing the model. If we had chosen a higher terminal value
for R*, then we would in effect add an exponential trend to the R* plotted in fig. 3, and
fig. 3 would then represent deviations from the trend. Thus, R* is smooth regardless of
our assumptions about interest rates beyond the sample.
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behavior is not hard to find. Whenever the long rate is above the short
rate, the long bond has a higher current yield (coupon divided by
price) which must be offset by an expected capital loss if expected
holding-period returns are to be equalized. A capital loss of course
requires an increase in long rates. Conversely, when long rates are low
relative to short rates, there must be an expected capital gain, that is, a
decline in long rates. If one compares this behavior in figure 3 with
the actual behavior of the long rate in figure 1, one again sees a
striking difference.

These striking differences between the behavior of the long rate
implied by (9) and that actually observed suggest that the model (1) is
incorrect too. However, we shall see that the inclusion of the expecta-
tions operator in the model (1) causes nontrivial complications, and
when these are taken into account the case for excess volatility is not as
simple to prove as one might have expected.

The model (1) makes R, = E;R¥ + ®. This means the forecast error
R¥ + ® — R, must be uncorrelated with information known at time ¢,
which includes all current and lagged interest rates:

E[(RF+® —-R) R]=0, 7=0;
E[(R* + (I) R’) Ti— T = 09 T= O.

(10)

Here, the ¢ subscript on the expectations operator has been dropped
since these are unconditional expectations. Implications of these re-
strictions for the spectrum of the bivariate process (R,, r,) are dis-
cussed in Appendix A. One might think of testing these restrictions by
regressing R — R, onto a constant and R, R,_,, R,_,, and r,, ,_,, r,_s,

. (or any subset of these). The theoretical regression coefficients
(except for the intercept) must be zero. It should be obvious that, with
the data plotted in the figures, not all coefficients would be zero. Since
RF# is very stable, and R, very volatile, movements in R} — R, corre-
spond closely to movements in R,, and hence R¥ — R, and R, would
show correlation approaching —1. The residuals in such regressions
are, however, serially correlated so ordinary significance tests are not
valid. Along lines suggested by generalized least squares, the data may
be transformed to eliminate the serial correlation by subtracting y
times the led value from the current value of all variables. Such a
“generalized least-squares” regression would then amount to regress-
ing A, — r, onto transformed right-hand variables."® Except for a

'Y We can write R¥ = G (F)r,, where F is the forward operator defined by F*r; = 7.4,
and G(F) is a polynomial in the forward operator. Then, G (F) = (1 — y)/(1 — vF). One
can invert the polynomial and one finds r, = G(F)~ lR"‘ = [(1 = yF)/(1 — vy)IR¥. The
linearized holding- period yield H, can be written A, = [(1 — vF)/(1 = y)] R, and hence
R, =1[(1 -y - yF)]H, Therefore, (R, — R¥) = [(1 — y)/(1 — yF)I(H, — r,). Since by
our model (H, — 7,) is a forecast error whose lagged values are known at time ¢, H, —
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constant due to ®, H, — r, is, like R¥ — R,, a forecast error which
should be uncorrelated with all information at time ¢ but which, unlike
R#¥ — Ry, is serially uncorrelated since its lagged value is known at time
t. There is, however, still one important difference between this model
and the usual generalized least-squares model, namely, the residual
H, — r, is uncorrelated with all current and past, but not future,
interest rates, and hence the variables R, — yR,;, and r, — yr,; cannot
be included in the regression. The correct procedure to test the model

is then to regress H, — r, onto a constant and R,_, — YR, R;—, — YR,
..o.,andry —yr,ri—y — Yriy,...,or,justontoaconstantand R, R,
.., ri 7oy, ..., and do a significance test such as a conventional F-test

on the coefficients. I will perform tests along these lines in Section IV
below. For the remainder of this section, we will concern ourselves
instead with the implications of (10) for the volatility of interest rates.

The first implication of (10) for interest rate volatility has already
been suggested. If a regression of R — R, onto a constant and R, is to
yield a zero coefficient for R,, then var(R) must be less than var(R*), as
Shiller (1972) and LeRoy and Porter (1979) noted. Since (R — R,)
must be uncorrelated with R, var(R¥) = var(R,) + var(R¥ — R)).
Moreover, since R¥ is a moving average of r,, it must have a smaller
variance than r,, and hence var(R,) < var(R}¥) < var(r).

This means that the model (1) must imply an even smaller ampli-
tude for the long-term interest rate than that predicted by equation
(9). It seems clear, then, that the large amplitude of movements of the
long rate as observed in figure 1 could not be reconciled with the
behavior of short rates if short rates are expected to swing up and
down in the future with repeated episodes roughly like those ob-
served in the cycles from 1967 to 1971 and 1972 to 1976. We cannot
rule out, however, that other behavior of the short rate is expected,
unless we model the stochastic behavior of the short rate. If r is
expected to have some very slow (long-cycle) movements in the fu-
ture, then these movements will not be effectively reduced by the
moving average (9), so R* and R may yet have a fairly high variance.

The inequality var(R) < var(R*) puts limits on the total amplitude
of the long-rate series. It does not tell us whether the long-rate series
need be a “smooth” series. Intuition would suggest that the smooth-
ness observed in figure 3 should extend, at least in some sense, to the
model (1). We can show that this is the case by finding an upper
bound to the variance of the linearized holding-period yield / or of H
— r. In doing this, we make no assumptions, it should be emphasized,

is serially uncorrelated, and hence the generalized least-squares transformation yields
serially uncorrelated residuals. This also implies that var(R, — R¥) = [(1 — y)*(1 — v?)]
var (H, — r,), as was noted by LeRoy and Porter (1979) and formed the basis of the test
by which they rejected their model of stock prices.
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about the nature of the random processes or the information used in
forecasting, such as the bivariate ARIMA forecasts assumed by LeRoy
and Porter (1979). We assume only (10) and that processes are sta-
tionary.

From (10) and our discussion above, we know that cov(H, —r,,R)) =
0. Using the definition (7) of H, for n = = (so thaty, = y), we then see
that:

coV(R4, R)) = ;llvar(R,) - %pﬂi Vvar(R,) Vvar(r,), (11)

where p,; is the correlation coefficient between r, and R,. We then take
the expression for the variance of the holding yield H:"var(H,) = var
(R, — YRu)/I(1 — )] = [(1 + ¥ var(R)) — 2ycov(R,, R+)l/(1 — v)?
and substitute into this expression the expression (11) for cov(R/, R 1)
and maximize (by differentiating and setting to zero) the resulting
expression with respect to var(R,;). The second derivative must be
negative, since our model implies p,r > 0. We find that the maximum
isV g = var(r)piz/(1 — v*). Since positive semidefiniteness requires that
pix < 1, our model then implies that:

O‘(H,) < ao(ry), (I.1)

where « = (1 — ¥ and o denotes standard deviation. Since
pigvar(r) = var(r), where 7 is the fitted value of a regression of r, on R,
we also have the stronger inequality:

o) < aoc(¥). (I.1")

The coefficient a may be rather larger than the one expected (fory =
.98 with quarterly data, a = 5), so fairly high holding-yield volatility is
consistent with the model. Still  is finite and (I.1) and (I.1") can be
tested. The coefficient a depends on our choice of y = 1/(1 + R) and
depends ultimately on the interest rate R we linearize around. How-
ever, for small R, « = 1/V2R, so thata is not highly sensitive to the
choice of R. If we varied the log of R by as much as * .30, the log of a
would vary only by about + .15. This will generally not affect our
results.

These inequalities quantify the smoothing behavior of the model,
since o(f,) is high when R is a choppy unsmooth series. Clearly, the
permissible standard deviation of H increases with the standard de-
viation of r, and only that component of the variance of r, namely, the
variance of 7, that correlates with R is relevant. The correlation
coefficient p,; measures how much information about future r is

" Stationarity requires var(R,) = var(R). Stationarity means, in the theory of
stochastic processes, that the unconditional distribution of R, does not change, and
hence that R does not explode. The conditional variance E(R, — R)* may yet change.
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implicit in current r.. If p,; is one, then the r process is first-order
autoregressive 7, = A\r—, + ¢ and E,(7,4;) = M7,,j = 0,and R, =7, (1 —
Y)/(1 = y\), where - denotes demeaned series. The maximum possible
o(H) for given o (r) then occurs with A = vy, and here o(R) = o (r)/(1 +
y) = Yoo (r).®

By the same sort of reasoning, we can also show that restrictions on
the smoothness of the long-rate series can be found which do not
require knowledge of var(r)) and would hold, technically, even if
var(r,) were infinite (r, is unstationary) so long as var(Ar,) is known
and finite.'" As long as Ar, is stationary, H, — r, and R, — r, will also be
stationary, and we can put limits on var(Hl — r,) given var(Ar,).

To show this, we use the restriction cov(H, — r,, R, — r,) = 0, which
follows, as before, from (10). This restriction implies, instead of (11),
that:

COV(R, — 1/, Ryyy — 7y4y) = % var(R, —r,) — cov(R; — r, Argq). (117)

One may then substitute (11’) into var(H, — r) = (1 — y) 2 var[(R, —
r) — YRy — Tiv1) — ')’Arrﬂ], which yields
var(H, —r) = (1 = ) *[(y* = 1) var(R, — r,) + ¥* var(Ar,)
+ 2Y PR ary Vvar(R, — r,) Vvar(Ar)].

If we maximize this expression with respect to both var(R, — r,) and
Pre-re.arp W€ get an upper bound to var(H, — ;). Our model then
implies that:

O'(H, — 1) < bo(Ary),
b=y —y)""(1 —y) =ay/(l —v) =alR.

The upper bound is obtained if pp,,.ar, = 1 and, in a case analo-
gous to that which gave rise to the upper bound in (I.1), Ar, is first-
order autoregressive, Ar, = yAr,_, + €, and E(Ar.;) = vAr, j = 0.
This upper bound, which is quite high, is obtained only when r, is very
strongly unstationary. In fact, for all of our data sets Ar, is negatively
correlated with R, — r,. If we require that pg,_,, s, be less than or
equal to zero, the maximum var(H, — r,) comes when var(R, — r,) = 0,
and so our model implies:

a(H, —r) < ca(Ary),
c=7v/(1 —vy)=1/R.

(1.2)

(1.3)

" 1f r, is regressed on a constant and r,_,, the coefficient of r,_, is .843, .966, .588,
845, .885, and .502 for data sets 1-6, respectively, always substantially below the
corresponding vy, in table 1.

" 1f r is expected to drift too far over the relevant horizon, our linearization argu-
ment for (1) may break down. This appears not to be a problem in our samples, since
the value of R, remained fairly near R.
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The upper bound occurs when Ar, is white noise, 7, is a random walk,
and R, =r, + .

The elements in the inequalities (I.1), (I.1'), (I.2), and (1.3) are
examined for six data sets in table 1. All of the six data sets involve
bonds that have a sufficiently large time to maturity that they may be
approximated for our purposes as consols, and vy, = y."” However, v,
(using for n the maturity of a representative bond in the sample and
for R the average value of R over the sample) was substituted for 7y in
the above formulas so as not to overstate the holding-yield variance.'®

We see from the sample standard deviations that for five of the six
data sets o (H) > aca(r), violating the inequality (I.1), and for all six data
sets o(H) > ao(7), violating the inequality (I.1')."* One also notes that
for two data sets o(R) > o(r). The inequalities (I.2) and (1.3) are,
however, satisfied by the data.

That the inequalities (I.1) and (I.1’) are violated by the data consti-
tutes some evidence against the model (1). That (I.2) and (1.3) are
satisfied means that one cannot find evidence contrary to the model
based only on the knowledge of o(Ar) and the simple arguments
alluded to before about the smoothing imposed by the averaging in
(). In simple terms, it is conceivable that even if o(Ar) is very small, o (r)
may be large, if r is expected to drift far above its historical range in
the future (and @ is sufficiently negative that R is not large). The

'" A couple of other features of the data deserve mention. The bonds are callable,
though for the Federal Reserve Series there is 5-year call protection, and for consols in
data set 5 the call price is prohibitively high. Consideration of call provisions only
strengthens our case. Call provisions ought to reduce the volatility of bond prices by
shortening the effective maturity or putting an upper barrier on price. Differential
taxation of interest and capital gains might, if our time period is long enough so that
capital gains rates apply, suggest that P{{7"” — P{ in expression (4) be multiplied by
(1 = g)(1 — i), where g is the effective rate of taxation on capital gains and i is the
income tax rate of the “representative” bond investor (see Shiller and Modigliani 1979).
This consideration again strengthens our case. Offering a tax advantage for capital
gains means bond prices do not have to move as much to achieve equalization of
(after-tax) returns.

"* The approximation error in our use of finite maturity bonds then comes only in
our use of R{%, rather than R{}7" in computmg H'. This error should be negllglble for
long-term bonds. The mequdlmes where vy, is substituted for y can be derived in the
same way for finite maturity bonds after n is substituted for n — 1 in the expression for
fl(ll)

' The sample period for which the results are weakest is that from 1919 to 1959 in
the United States, data set 4, apparently largely because of the period of the depression
and World War I1, when short rates were low and then officially pegged near zero, but
long rates failed to fall so far. In this abnormal situation the market apparently
correctly anticipated that the peg would end, and so here the expectations theory does
the best. If the years of low short rates 1933-51 are omitted from the sample ao(7) falls
10 3.82, ao(r) to 4.32, and o(H) rises to 6.81. That the inequality (I.1) is violated by this
shorter sample is not due to the 1920-21 episode. Although short-term holding yields
made large movements then, the short rate also moved dramatically. If the years
1920-21 are also omitted (as well as the years 1933-51) from data set 4, o(H) falls from
6.81 to 6.09, but ao(r) talls even furlher from 4.32 to 3.33, causing (I.1) to be violated
even more strongly.
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short-run movements in R might reflect genuine new information
about the large values of r that will come in the future.

Since A, — r,and H, are approximately serially uncorrelated, we can
put a lower bound on o(f] — r) and o(f) by computing a one-sided 95
percent confidence interval for them based on the x* sampling dis-
tribution.2’ The lower bounds in table 1 are denoted o,,(H — r) and
o,(H). Then if we accept that the true standard deviations lie above
these values, o, (H)/a is the lowest possible value for o(r) and o (7) if
the model (1) is to hold. For data sets 1, 2, 3, and 5 the standard
deviation of the short rate would have to be roughly twice its histori-
cally observed value in order to justify this standard deviation of H,
given the inequality (I.1).

IV. Testing Equality Restrictions on the Cross-Covariance
Functions

We have seen that in all data sets the sample standard deviations of H,
and r, do not satisfy the inequality (I.1"). This implies that the sample
covariances do not satisty the equality restriction cov(H, —r,R) = 0,
which was used to prove (I.1") (at least as long as the sample variance
of R, approximately equals the sample variance of R,,). Yet we have
noted that many authors have studied some of the covariance restric-
tions implied by the model (by running appropriate regressions) for
various samples and concluded in favor of the rational expectations
model. Why then was it not discovered by these authors that this
covariance restriction was violated in the sampler I will offer two
explanations. First (and foremost), even if the holding-period yield
variance is much too high, the R? in the regressions which would
reveal this may be very low. Second, many authors have not run the
right regressions; that is, they tested some restrictions which are not
relevant to the holding-yield variance inequalities.

To see the first point, consider, for example, the monthly data for
which the point is most dramatic. With monthly data, the parameter
v. will be very nearly one. In data set 2, it is .992. The maximum
standard deviation of the one-period holding yield consistent with the
rational expectations model occurs when R, is given by the simple
autoregression R, = y,R,_, + €, and then the standard deviation of H,
is about 12 times the standard deviation of R,. If, on the other hand,
the correlation of R, with its own lagged value is only slightly smaller,
then the standard deviation of the one-period holding yield may be
much higher. For example, if the correlation of R, with R, is .96,

* The x* confidence interval depends on the normality assumption, which is open to
question. Normality appears satisfied for most data sets (see n. 23 below).
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then the standard deviation of H is about 35 times that of R,. In this
situation, if AR, is regressed on R, the R* (i.e., the proportion of the
variance of ARy, explained by R,) is only .02. This R? turns out to be
very small (and may remain small if other independent variables are
added), so that it is unlikely to be significant in small samples. Hence
many would be led to conclude that R, is approximately a random
walk.

The second point is that many of the most elaborate studies of the
covariance restrictions implied by the model, such as those by Sutch
(1968), Shiller (1972), and Modigliani and Shiller (1973), simply did
not test these particular restrictions. These studies tested, in essence,
whether a regression of R onto current and lagged r and current and
lagged inflation rates produces an equation (the “term-structure
equation”) which is the same as an optimal forecasting equation for R*
based on the same variables. Neither R nor R — r appeared on the
right-hand side of the equations. In fact, the serially uncorrelated
residual in the term-structure equation (which was ascribed in part to
exogenous shocks to supply and demand in various “habitats”) meant
that high R or high R — r would indeed imply high A — r.

Sargent (1979), on the other hand, did test (in essence) these re-
strictions, along with others implied by the model, using a likelihood
ratio test. His tests did not reject the hypothesis that all restrictions
hold, perhaps due to low power of this test for the particular restric-
tions that we are concerned with here and perhaps to his use of a
relatively short-term (5-year) bond to represent a long bond.

We now proceed to test restrictions in (10) by running regressions
as described above. When one contemplates running such regres-
sions, one must confront the fact that there are potentially an infinite
number of coefficients in the model, yet only a finite amount of data.
One must eliminate variables before running a regression. Since all
coefficients are zero, it does not matter from the standpoint of the
model which variables are eliminated. My approach was to eliminate
all but R, (table 2) or (R, — r,) (table 3). It is good statistical meth-
odology to concentrate the power of one’s test onto an interesting
alternative hypothesis. I have attempted to do this in consideration of
the volatility arguments noted above (these restrictions produced the
inequalities) and the understandability and simplicity of the alterna-
tive hypothesis. Sargent’s (1979) regressions included, in effect, eight
right-hand-side variables: the current and three lagged values of both
R and r*

*! This interpretation does not appear in Sargent’s paper, which emphasizes that his
model tests some complicated nonlinear restrictions on the coefficients of an auto-
regression for (r,, R,). The nonlinearity of the restrictions is introduced by his use of the
assumption that the R, series refers to finite maturity pure discount bonds. Since time to
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The regressions were run for each of the data sets using both H,
and H,. Results were very similar with the two different measures of
one-period holding yields, and I chose to present in table 2 those
using H, — r, and R, and in table 3 those using H,—r,and R, — r,. In
table 3, the results are reported asaregressionof R, —R,onR, —r,,
and since R, — R, is a linear combination of H, — », and the
independent variable, it amounts to the same regression. The
coefficient of R, — r, should then equal (1 — v,)/y,, which is greater
than zero.

One notes, since R, enters positively into the determination of H,
and A,, that R, in effect appears on both sides of all of these equations.
This might seem to suggest an upward “bias” for the slope coefficient
in the regressions. In fact, however, under the rational expectations
hypothesis the error term in the regressions is uncorrelated with the
independent variable, and so under this hypothesis there is no bias. If,
on the other hand, the rational expectations hypothesis is only partly
true and R, is influenced by other factors not in the rational expecta-
tions model, then we should not be surprised if such a “bias” emerges
and the slope coefficient turns out to be significant.

Unfortunately, an upward bias in the coefficient of R, or (R, — r,)
might also emerge in some of the data sets even if the rational
expectations model is true. It is possible that measurement error in
the R, series could induce an upward bias in the coefficient of R, or (R,
— r1). However, there should be little measurement error in these
series. It is true, of course, that not all bonds of the same maturity and
coupon sell for exactly the same price, so that different bond yield
series may differ slightly, but this is not so much measurement error
as a reflection of the very deviation from the rational expectations
model that we are interested in describing.?

maturity is constant, H{"’ cannot be expressed as a linear function of his R\ series. We
have eliminated the nonlineari ity by discussing consols or long-term coupon-carrying
bonds which may be approxnmaled as consols. Our model then places simple linear
restrictions on the autoregressive coefficients for (r,, R,), which are in effect sum-
marized in (10).

* Suppose the true unobserved long rate (which we shall denote by R,) behaves in
accordance with the expectations theory, and that (for table 3) R,,, — 1?_, =a+bR, —1)
+ U,, where b = (1 — y,)/y,. If the error in measurement ¢, = R, — R, is uncorrelated
with all other variables (including its own lagged values) and if U, is uncorrelated with
R, — r;, then the coefficients whose estimates appear in table 3 will beb = [b var R -r)—
var(e)l/[var(R — r) + var(e)]. _Using var(R — r) = var(R — r) + var(e) and solvmg for

var (¢) we find: var(e) = [(b — ) var(R — r))/(1 + b). We can, using this expression, deduce
how big the measurement error would have to be if it were to account for our results in
table 3. Setting b = (1 — v,)/y, from table 1, we then find that for data sets 1-6 the
standard deviation of the measurement error would have to be 58, 27, 55, 32, 62, and
17 basis points, respectively. It is inconceivable that true measurement error could be
this high. A 4 standard deviation range would be over 2 percentage points for several
series. Discrepancies between different bond-yield averages purporting to measure
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In table 2 we observe a significant positive coefficient (based on a
one-tailed test at the 5 percent level) for R, in data sets 1, 2, and 5.2
Although other data sets were not significant at the 5 percent level,
the pattern appears to be the same for all six data sets: a negative
intercept and a positive slope coefficient.**

The R? is small in all of the table 2 regressions, as we would expect.
The coefhficients, however, are not small. For example, with data set 1
the coefficient of 4.97 means that if R, rises by 1 percentage point,
then the expected annualized one-quarter holding yield on long
bonds relative to short returns rises by 4.97 percentage points. The R*
is still small since there is so much unpredictable variation in the
short-term holding yield.

In table 3, the coethicients of R, — r, have a negative sign (contrary
to the implication of the model [1]) in data sets 1-5 and are
significantly below the theoretical value of (1 — v,)/y, at the 5 percent
level based on a one-tailed test for all data sets except data set 3.

The results in table 3 contradict what may be thought of as the
essential characteristic of rational expectations models: that long-term
interest rates tend on average to move in such a way as to equalize
short-term holding yields. This characteristic, which we noted in
connection with the perfect-certainty model illustrated in figure 3,
carries over to our model (1) in the sense that long rates should rise on
average when long rates are high relative to short rates and decline on
average when long rates are low relative to short rates. Instead, long
rates if anything move in the opposite direction, which means that
when long rates are high relative to short rates they tend to move
down in the subsequent period. The capital gain thus produced
augments (rather than offsets) the advantage to holding long-term
bonds when these bonds have higher current yield. This behavior is
not consistent with our rational expectations models but is instead
what we would expect to find if long rates are influenced by noise

roughly the same thing are nowhere near this high, and, as noted above, even these
discrepancies are not due primarily to measurement error but instead to variations in
actual price among similar high-quality bonds.

** Another potential problem in the evaluation of the ¢-statistics here is that the error
term may be nonnormal. The studentized range test recommended by Fama and Roll
(1971) as a test of normality gives statistics for H, — r,, for data sets 1-6, of 3.97, 4.61,
3.18, 4.40, 6.81, and 6.94, respectively. The ratio shows no evidence for nonnormality
for data sets 1-4, but is significant at the 0.5 percent level for data sets 5 and 6.
Examining the data suggests that for data set 5 the problem is one of increasing
variance through time, rather than leptokurtosis. The equations for data set 5 were
thus reestimated by generalized least squares by scaling the observations by e™*%, ¢ = 1,
..., 86. The t-statistic in the regression then drops to 1.33 in table 1, which is no longer
significant at the 5 percent level, but ¢, and ¢}, in table 2 remain significant (f, = —1.88
and ¢, = —2.40).

* Basu (1977) found an analogous result that price-earnings ratios are negatively
correlated with corporate stock returns.
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which causes long rates temporarily to rise relative to short rates and
then fall to a more “normal” level.?

V. Summary and Conclusions

The goal that was set for this paper was in some ways ambitious. I
sought to find simple ways of understanding whether the data are well
described by any of a number of expectations models of the term
structure. [ was guided, however, by a plain fact that seemed to stand
in glaring contradiction to these models: the fact that actual long-rate
series (as illustrated in fig. 1) look completely different from ex post
rational long-rate series (as illustrated in fig. 3).

Since the ex post rational long-rate series was very smooth, it
seemed likely that a robust implication of the expectations models of
the term structure would be that actual long-rate series should be
similarly smooth. It is not easy, however, to give formal content to this
implication for all of these models. The linearization which produced
expression (1) enabled me to derive some inequalities which do this,
subject, however, to the approximation error in the linearization. The
upper bounds on the volatility of the long-rate series that these in-
equalities impose occur only in worst possible cases where the short
rate has a specific autocovariance function. In using these inequalities
to examine the model, we passed up the possibility of using the actual
autocovariance function in conjunction with the expectations model
to put a tighter limit on the volatility of the long-rate series.

Based on sample standard deviations (table 1), the inequalities (I.1)
and (I.1") implied by the linearized expectations model appear vio-
lated by the data. If we wish to test whether the population standard
deviations violate the inequalities, then we must inquire whether the
terms in the inequalities can be reliably measured under general
assumptions in small samples. It was felt that it is reasonable to
suppose that we can put a lower bound on the left side of the in-
equalities by a usual x* one-sided confidence interval, since the vari-
able whose standard deviation is measured is approximately serially
uncorrelated. It is another matter to put an upper bound on the
right-hand side of the inequalities, since we have no real information
in small samples about possible trends or long cycles in interest rates.
Indeed, some would claim that short-term interest rates may be un-

* This observation (which was first pointed out to me by Franco Modigliani) is
analogous to one reported early by Shiller and Siegel (1977) that long-term bond yields
move on average in a direction which exacerbates rather than mitigates the effect of
inflation on real returns. Mishkin (1978) has further confirmed table 2 (as well as table
) with high-quality U.S. short-term holding-yield data on intermediate term bonds,
and with a heteroscedasticity correction, although his table 3 results are somewhat less
significant than those reported here for roughly the same sample.
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stationary and hence have infinite variance. The fact that the lower
bound on the left-hand side exceeds the sample value of the right-
hand side may be interpreted as safely telling us, then, that we must
rely on such unobserved variance or expected explosive behavior of
short rates if we wish to retain expectations models. This conclusion
appears to hold for earlier time periods as well as the more recent.

The inequalities which characterize the smoothing behavior are not
the only avenues for constructing tests of the model which are power-
ful against an alternative hypothesis that long rates are too volatile,
and in fact small sample tests are available. Such regression tests
(tables 2 and 3) do generally reject the expectations model in favor of
an alternative hypothesis that long rates are disturbed by transient
effects unrelated to expectations. The regression results might still be
construed as offering some support for the expectations models in the
sense that the R? are small. However, based on the results reported
here, there is nothing more to be said for the expectations model. My
table 3 regressions show that movements in long rates tend to be in a
direction opposite to that predicted by the expectations models.

These negative results on the expectations model may be contrasted
with earlier positive results by Sutch (1968), Shiller (1972), Modigliani
and Shiller (1973), and Sargent (1979). Some interpretation of the
contrast, in terms of the residual of the term-structure equation, was
offered above. An attempt at further reconciliation of these appar-
ently conflicting results will be the subject of another paper.

Appendix A

Model Restrictions on the Spectral Densities of Interest Rates

The ex post rational long rate R¥ is defined in expression (9) as a moving
average of r.. The squared gain of this moving average, or “linear filter,” is
g w) = (1 — »)*[1 — 2y cos(w) + %], where w is frequency — # < w < 7. The
squared gain is 1.00 at @ = 0, declines monotonically as frequency increases,
and reaches [(1 — y)/(1 + y)]*atw = 7.2 If y is close to 1.00, the decline will be
very dramatic, as my example illustrated. The spectrum of R* thus lies below
the spectrum of r everywhere except at @ = 0, and is relatively much more
concentrated in the lower frequencies. Spectral analysis of actual interest rate
time series, however (e.g., Granger and Rees 1968), does not reveal any such
attenuation of the high-frequency components in long-rate series.

One might have thought that our results with the perfect-certainty model
(9)—that the spectrum of R* must be more concentrated in the lower fre-
quencies and must lie everywhere below the spectrum of r—should also carry

% If the interest rates r.,x do not have finite second moments (as claimed, e.g., by Roll
[1970] for forward rates), then we cannot use this analysis. It remains true if, as these
authors estimated, the characteristic exponent is greater than one, that the dispersion
of the rates will be reduced by averaging. Clark (1973), in any event, showed that a
finite variance model explains speculative price data well.
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over to the R in the general model (1). However, this is not the case, as a
simple example will illustrate. Suppose r, is a first-order moving average of a
white-noise process €: 7, = ¢ + 0¢_, 0 < 6 < 1, and suppose the ¢ is also
serially independent and no other information is available for forecasting, so
that the optimal forecast is linear in current and lagged r. Then, in this special
case, E,(r;+,) = 0¢, and E,(r+,) = 0 K > 1 so that R, = (1 — ) [(1 + y0)e,
+ 0¢,_,] will appear less smooth than r, since the moving average weights for R,
are relatively more concentrated on €, More precisely, the squared gain from
rto R (which is also the ratio of their spectra) 1s g*(w) = (1 — y)? [(1 + v6)* + 6*
+ 20(1 + y0) cos(w))/[1 + 6> + 26 cos(w)], which is a function that increases
monotonically with w for 0 < o < 7. One might also note that as 6 approaches
one, g*(w) approaches infinity atw = II. This illustrates that there is no limit to
the ratio of the spectra at a parucular frequency, and that the spectrum of R
need not lie everywhere below the spectrum of r as does the spectrum of R*.

In spite of this counterexample, it remains true that R, cannot have too
much power at the high frequencies. In the above example, the variance of R,
is very small, so that even though the spectrum of R is relatively more
concentrated in the higher frequencies and may have absolutely more power
at the highest frequencies, the total power in the spectrum of R at the higher
frequencies is still small. Inequality restrictions on the total power at the high
frequencies for R, can be derived from the restrictions that the model (1)
places on the autocovariance function of the bivariate process (r,, R).

The covariance restrictions (10) can be rewritten in terms of the cross-
covariance functions:

Canm) = (1 =) > T YCw(K +7), 720, (A1)

Co(=7) = (1 =) ? ColK +7), 720, (A2)

where for any pair of variables x and y, C,,(7) will refer to E[(x, — E(x)]
[yi—; = E(y)]. These expressions give all restrictions imposed by our model on
the autocovariance function of the bivariate process (r,, R;). Since C,(7) is not
generally an even function of 7 (as Cg[7] and C,,[7] are), these expressions do
not suffice to define Cyg(7) given C,,.(7), and hence the spectrum of R, is not
determined by the spectrum of r, as it was in the perfect-certainty case or
first-order moving-average case discussed above. This is as we would expect,
since we have not specified all of the information used in forecasting. Both of
the special cases considered above are in fact consistent with the above
equalities, though in each case additional restrictions are also involved. When
future short-term interest rates are known with certainty, the relations (Al)
and (A2) hold for all 7. When the expected future short rates are optimal
linear forecasts based on current and lagged short rates only (as in the
moving-average case considered above), then other restrictions can be shown
to characterize the cross-covariance function; that is, R does not cause r in the
Granger (1969) or Sims (1972) sense. Neither of these restrictions is assured
in the general case, however, and I do not assume them here.

We can now see in what sense the restrictions (Al) and (A2) may be
described as putting a limit on the high-frequency variance of R,. Since the
holding-period yield A, is derived by passing R, through the linear filter (1 —
vF)/(1 — ), then the spectrum of H,, S g(w), equals the spectrum of R;, Sp(w),
times the squared gain of this filter which is g%(w) = [1 + y* — 2y cos(w)}/(1 —
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¥)*. This gain function rises monotonically with the absolute value of fre-
quency. Squared gain is 1.0 at w = 0 and rises, for y = .98 (corresponding to R
= 8 percent per annum with quarterly data), to about 10,000. The variance of
H,is the integral from —a to 7 of its spectrum, which is then the integral from
—m to 7 of g*(w) times the spectrum of R, so that, by (I.1):

fﬂ 1+ 92— 2ycos(w)SR<w) do < _Yar(ro '
~ (I =y L=y

The left-hand side of this expression is a weighted integral of the spectrum of’
R, with very high weights for high frequencies. Thus, an observation that the
holding-period yield variance does not satisty the inequality may generally be
described as an observation that the high-frequency components of R, are too
strong to be consistent with the model (1).

Restrictions (1.2) and (I1.3) may similarly be interpreted as inequality re-
strictions on a weighted integral of the spectrum of the bivariate process (Ar,,
R, — r,). Our observation that the variance of R must be less than the variance
of R* is also of this form. Other (presumably less easily interpreted) inequality
restrictions of this form can also be derived from (A.1) and (A.2).

Appendix B

Sources of Data

Data are from the macro data library of the Federal Reserve System or the
Federal Reserve Bulletin unless otherwise noted.

Data set 1 (quarterly, 1966:1-1977:111): The long-term interest rate R is the
Federal Reserve recently offered AAA utility bond yield series (constructed
by Kichline, Laub, and Stevens [1973]), and the short-term interest rate r is
the 4-6-month prime commercial paper rate. Both series are for the first
week of the quarter.

Data set 2 (monthly, 1969:1-1974:11): The long-term interest rate R is a
series produced by Salomon Brothers for yields on the first of the month of a
composite portfolio of Aa utilities and industrials (Leibowitz and Johannesen
1975, table XII). The annualized 1-month holding yield H (Leibowitz and
Johannesen 1975, table XV) is not computed from the R series but from an
average price series for the bonds using the actual average coupon and
average maturity. The short-term interest rate » is the 90-119-day prime
commercial paper rate starting in June 1972, and the 4-6-month prime
commercial paper rate before that date, both for the first week of the month.

Data set 3 (annual, 1960-77): The long-term interest rate R is the Federal
Reserve new issue Aaa utility yield series for the first month of the year, and
the short-term interest rate r is the 12-month U.S. Treasury bill rate averaged
over the first month of the year.

Data set 4 (annual, 1919-59): The long-term interest rate R is the Moody
Aaa corporate bond yield average, and the short-term interest rate r is the
4-6-month prime commercial paper rate, both for the first month of the year.
The sample was ended in 1959 to provide estimates over a sample period
which does not overlap with those of data sets 1-3.

Data set 5 (quarterly, 1956:1-1977:111): The long-term interest rate R is the
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flat yield on 2% percent British Consols as reported in Financial Statistics from
the Central Statistical Office starting in 1962 and in the London Times for the
earlier years. Observations are taken at the last Friday of the quarter. The
coupon is paid on the fifth day of the following quarter. The short-term
interest rate series r is the 3-month local authorities temporary loan rate for
the last Friday of the quarter starting 1960:111 and for the last Saturday
before that as reported in the Bank of England Statistical Abstract, Number 1
(1970), table 29, and subsequent issues of the Bank of England Quarterly
Bulletin.

Data set 6 (annual 1824-1930): The long-term interest rate R is the annual
average rate of 3 percent British Consols through 1888 and on 2% percent
government annuities starting in 1889 (Homer 1963, table 19, col. 2, and
table 57, col. 2). The short-rate r is, for 1824-44, Overend and Gurney’s
annual average first-class 3-month bill rates and, after 1844, the annual
average rates (averaging maximum and minimum) for 3-month bank bills,
both from Mitchell and Deane (1962, p. 460). The data series were termi-
nated here in 1930 to provide an estimate for the period before the great
depression.
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