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Abstract

The problem of the shape of a random object such as a flexible polymer chain was first
tackled by Kuhn nearly thirty years after the answer to the probability distribution of its size
was publicly sought for by Pearson in 1905. Since then, significant progress in the field has been
made, but the important task of evaluating both analytically and accurately averaged indi-
vidual principal components of the shape or inertia tensor for a walk of a certain architectural
type remains unfinished. We have recently developed a new and general formalism for both
exact and approximate calculations of these and other averages such as asphericity and
prolateness parameters, which is illustrated here for an end-looped random walk and a self-
avoiding or Edwards chain. We find that this combined open and closed random walk has
surprisingly larger shape asymmetry than a simply open walk despite its smaller size.

The shape of a random walk taking place in a d-dimensional space is often
described by d principal components arranged in  descending order, ie.,
S, =28, > - =8, of the shape or gyration tensor [ 7, 11,15] S which registers precise-
ly its vertices’ positions and hence its spatial configuration. It is related to the inertia
tensor I of an n-vertex walk by the equality I = n(s*1 —S) where unit mass is assumed
for each vertex, 1 is the identity matrix, and s? is the trace of S, i.e., s* = tr(S) with
s historically termed radius of gyration [3,5], i.e., the square root of the arithmetic
mean of n squared distances of the vertices from their centers of mass. For conveni-
ence, unit step length is further assumed for the walk.

A walk may be cither self-intersecting [1-3, 5] (the large-n limit of the gaussian
model) or self-avoiding (Edwards model) [1,4,10,12-14] and may have different
architectural types [19] usually specified by the architecture or Kirchhoff matrix K.
Let A denote the diagonal matrix of all n —1 nonzero eigenvalues of K times n®.
The eigenpolynomials of A, i.e., P, {(x) =1 + xA ™| for an end-looped or dumbbell-
like walk, ie., two identical large rings connected by a doubly-sized chain,
may be written down with the use of graph theory, with the result that
D(x) = P.(x?) = U(x) U*(x/2) B(x, —1/3) B(x,2/3), where U(x) = 4sh(x/4)/x and
B(x,a) = [ch(x/4) —a]/l —a). From the above eigenpolynomial, one can easily
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Table 1
Asphericity parameters and factors and exact values of shape and shape variance factors for open (I), closed
(II) and end-looped (II1) random walks in two dimensions

Type <A) J Approximate Exact g, a,
dy 2 01 23
1 0.396400 0.571429  0.816228 (.183772 0.832938 0.167062  0.369214  (.009090

2 0.262553  0.333333 0723607  0.276393  0.754323  0.245677  0.155901  0.014739
3 0427009  0.632923  0.840212  0.159788  0.852352  0.147648  0.439593  0.006567

obtain an analytic expression for the function S,,(x) defined as the large-n limit of
tr(A + x21)™™

For arbitrary random walks in two dimensions, we find by using the method of Solc
and Gobush [9] that shape factors, i.e., the J, defined as ¢S,)/{s*> or the ratio of
averaged principal component to mean square radius of gyration, and shape variance
factors, the o, defined as ((S2) —{8,>%)/<{s?>?, are given by 8, = 1/2 +( —1)*y,, and
0, = (1 + 3u,)/4 +( —1)* x, —5Z, respectively, where p,, = 5,,(0)/ST(0) and y,, is de-
fined as

oK

*m = ST ™0) J|xD(x +ix)| " Im [F,,(x +ix)] dx,

0

with F(x) = S;(x), F2(x) = S,(x) + 27! $}(x), and Im(x +iy) denoting the imaginary
part of x +1y. Numerical evaluations of J, and o, for three types of random walks, i.c.,
open, closed and end-looped walks, based on the above equalities have been made and
the results are tabulated in Table 1. We note that our approach reproduces the results
for rings first reported by Solc and Gobush [9]. Similarily, we can write down
expressions for 8, and o, for the d = 3 case. However, a complication occurs in this
case as it involves triple integrals over the restricted domains of the rotation group
SO(3), which are difficult to evaluate accurately even by numerical means. Therefore,
for random walks in a space with d >3 and for self-avoiding walks, methods for
approximately evaluating {S7'> must be sought.

An analytic approximation to <ST) for an open walk has long been
attempted [1,15,17,20-23]. Here we present a method which is applicable to
arbitrary walks in arbitrary d >2 dimensions. It is based on the equality
St =21 cmeaa( —1)" 18" M, (S) which follows from the setting of the eigen-
polynomial of S to zero, where the M,,(S) are monomial symmetric functions of
Sy.-.., 84 corresponding to the partition (1, ..., 1) of m, e.g., M{(S) = tr(S). Now by
replacing S, and M, (S) in the above-mentioned equality by (S,> and {M,(S)>,
respectively, which is valid for d =oo or under the strong condition that the
individual principal components are independent random variables, we can
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Table 2
Asphericity and prolateness parameters and factors and approxiamte values of shape factors for open (I),
closed (II}) and end-looped (III) random walks in three dimensions

Type 4> é (P { 3y d2 33

1 0.394274 0.526316 0.237475 0.443740 0.750384 0.178522 0.071094
2 0.246368 0.294118 0.101430 0.153173 0.618805 0.265070 0.116125
3 0.433078 0.589635 0.282368 0.526900 0.783988 0.152818 0.063194
Table 3

Dimensionality dependence of asphericity and prolateness parameters and the first three shape factors for
end-looped random walks

d 4> Py S d; ds
4 0.437509 0.283849 0.755168 0.147947 0.062060
5 0.440845 0.285132 0.737623 0.144641 0.060354
30 0.457942 0.293616 0.677574 0.131787 0.051003
% 0.462976 0.296674 0.665240 0.128910 0.047681

approximate shape factors as the roots of a polynomial of degree d for any walk and,
for random walks in particular, the polynomial is

Waix) =x! —x""1 + 3 pad)x"",

2<m<d
Mnld) = ¥ [ ], ;o (1 =4/ 7m =( =)™ C,/ST(0),

and the C,, are the coefficients in the power series expansion of D(x!/?). We note that
Vm Satisties the recurrence relation y,, = —Xg < cm—1 Um-;7;/m With 7o = 1 and that in
obtaining W,(x) use is made of the analytic results of Wei and Eichinger [24] for
{M,(S)>. We note that for d = 3, our method recovers the explicit expressions for the
o, first obtained by Yang and Yu [22]. We have calculated shape factors for the three
previously-mentioned types of random walks in two and three dimensions (see Tables
1 and 2) using the above method. For an Edwards chain or open self-avoiding walk,
the &( =4 —d)-expansion results at Of(g) for the (M, (S)> have been obtained by
Aronovitz and Nelson [13] and we may then proceed to calculate shape factors for the
walk with the result that &, =0.854495 and &, =0.145505 for d =2; and
01 =0.776017, 6, = 0.164669 and 6, = 0.059314 for d = 3. We have also investigated
the dependence on d(2 <d <) of shape factors for end-looped random walks (see
Table 3).

Apart from shape factors, there are other parameters which are widely used in
characterizing average shapes of a walk, e.g., asphericity factor § and parameter (A
and prolateness factor { and parameter (P). § and { are defined as the ratio of the
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statistical average of the numerator to the denominator of A and P, respectively.
A and P are defined as 4 =d tr(A?)/[(d —1)s*] and P =d* tr(A%)/[(d —1)(d —2)s°],
where A =S —(s?/d)1, 0 <A <1 and —(d —1)"3 <P <1. A value of zero for 4 or
P corresponds to spherical shape and a value of 1 to rodlike shape in the interval
[ —(d —1)73,0) or (0,1] for values of P in the region of oblate or prolate shape
[13,15,24]. Simple analytic expressions for d and { are readily obtained for arbitrary
random walks by use of the Wei-Eichinger method [24]. For analytic calculations of
the statistical averages of 4 and P, ie., {(A) and {P), use is made first of the
Laplace-deGennes transformation of the factors 1/s* and 1/s® as first done by Diehl
and Eisenriegler [25] for evaluating {(A) for chains and rings, and then of the
Wei-Eichinger method [24]. The final results for self-intersecting walks are (A) =¢,
and (P} =¢,, with ¢,, given by

o0

Pm=d wm(d)JXz"“ ' Su(x) D™ 43(x) dx,
0

where w,(x) =1 +x/2 and w;(x) = (1 +x/4)w,(x). We note that analytic evaluations
of §,{, {A> and (P) for self-avoiding walks are much more involved and can
nonetheless be carried out [13,26]. Numerical evaluations of {A4) and {P) based on
the above equalities for open, closed and end-looped random walks in two and three
dimensions have been made and the results are tabulated in Tables 1 and 2 which also
include values of  and { for these walks for comparison. In Table 3 are numerical
values of (A4} and {P) for an end-looped random walk in higher dimensions. Finally,
we note that for large d, (4> or {(P) may be expanded as an asymptotic series in
1/d for arbitrary random walks and that a similar 1/d-expansion for §, or o, can
also be carried out as in the case of an open random-walk [15,17,23,27]. We
have obtained the 1/d-expansion of (A} at O(d~?) which recovers the results at
O(d™1") for chains and rings [15,25] (the details of which are to be published
elsewhere), and the results of (P> at O(d '), 1., {P) = u3[1 +685/d +O(d~?)] with
By =1+2p, —3pa/ps.

From Table 1, it is seen that our approximation method of analytically evaluating
shape factors is satisfactory, especially for the largest shape factor, for the three
selected types of random walks confined to a plane, with relative errors of 8, being
between 1.4% and 4.1%. It is also found that the simulation results of Bishop and
Michels [28] for shape factors of 2D chains and rings of finite length (n = 64), i.e.,
0.839 and 0.161 for chains and 0.755 and 0.245 for rings, are very close to the exact
values given in Table 1 and that shape variance factors are in descending order, i.e.,
g1 >0,, for all three types of random walks, implying a broader distribution of the
largest principal component. In three dimensions, our approximate values of shape
factors for chains (see Table 2) are close to those of Zifferer and Olaj [29] by use of
simulation (0.7646, 0.1721 and 0.06333, extrapolated to n = oc) while the results for
Edwards chains are in agreement with the simulation results of Mazur, Guttman and
McCrackin 8], i.e., 0.785, 0.162 and 0.053. Our approximation is also seen to be an
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improvement to that of Doi and Nakajima [207 (0.7386, 0.1814 and 0.08004) and that
of Gaspari, Rudnick and Beldjenna [23] (0.7599, 0.1900 and 0.08443, see also
Refs. [15,17,27]) for open self-intersecting walks; (to the approximation) and of
Minato and Hatano [21] (0.7658, 0.1667 and 0.06753) for open self-avoiding walks. It
is further noted that a self-avoiding walk is more extended than a self-intersecting one
in both two and three dimensions. For an end-looped random walk, it is found from
Tables 1-3 that it is more elongated than simply open or closed random walks though
its average size is smaller than that of a chain (with a shrinking factor, i.e., the ratio of
its mean square radius of gyration to that of a chain, of 51/64 =~ 0.796875); as
d increases from 2 to oo, its shape asymmetry decreases slowly, reaching a limit at
d = o0.

Finally, we notice that although no experimental determination of shape factors for
randomly coiled macromolecules has been done so far, there are available [30]
numerical values which completely specify the equivalent ellipsoids of globular
proteins as calculated from small-angle X-ray scattering data. This should stimulate
future experimental work on shapes of polymers modeled as either self-avoiding or
self-intersecting walks.
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